ﻻ يوجد ملخص باللغة العربية
In this note we study some properties of infinite percolation clusters on non-amenable graphs. In particular, we study the percolative properties of the complement of infinite percolation clusters. An approach based on mass-transport is adapted to show that for a large class of non-amenable graphs, the graph obtained by removing each site contained in an infinite percolation cluster has critical percolation threshold which can be arbitrarily close to the critical threshold for the original graph, almost surely, as p approaches p_c. Closely related is the self-destructive percolation process, introduced by J. van den Berg and R. Brouwer, for which we prove that an infinite cluster emerges for any small reinforcement.
We study a dependent site percolation model on the $n$-dimensional Euclidean lattice where, instead of single sites, entire hyperplanes are removed independently at random. We extend the results about Bernoulli line percolation showing that the model
Consider an anisotropic independent bond percolation model on the $d$-dimensional hypercubic lattice, $dgeq 2$, with parameter $p$. We show that the two point connectivity function $P_{p}({(0,dots,0)leftrightarrow (n,0,dots,0)})$ is a monotone functi
We prove that for Bernoulli percolation on $mathbb{Z}^d$, $dgeq 2$, the percolation density is an analytic function of the parameter in the supercritical interval. For this we introduce some techniques that have further implications. In particular, w
Consider Bernoulli bond percolation a locally finite, connected graph $G$ and let $p_{mathrm{cut}}$ be the threshold corresponding to a first-moment method lower bound. Kahn (textit{Electron. Comm. Probab. Volume 8, 184-187.} (2003)) constructed a co
We prove that the heavy clusters are indistinguishable for Bernoulli percolation on quasi-transitive nonunimodular graphs. As an application, we show that the uniqueness threshold of any quasi-transitive graph is also the threshold for connectivity d