ﻻ يوجد ملخص باللغة العربية
We consider the Bernoulli Boolean discrete percolation model on the d-dimensional integer lattice. We study sufficient conditions on the distribution of the radii of balls placed at the points of a Bernoulli point process for the absence of percolation, provided that the intensity of the underlying point process is small enough. We also study a Harris graphical procedure to construct, forward in time, particle systems with interactions of infinite range under the assumption that the corresponding generator admits a Kalikow-type decomposition. We do so by using the subcriticality of the boolean model of discrete percolation.
We study a dependent site percolation model on the $n$-dimensional Euclidean lattice where, instead of single sites, entire hyperplanes are removed independently at random. We extend the results about Bernoulli line percolation showing that the model
We prove that for Bernoulli percolation on $mathbb{Z}^d$, $dgeq 2$, the percolation density is an analytic function of the parameter in the supercritical interval. For this we introduce some techniques that have further implications. In particular, w
We prove that the heavy clusters are indistinguishable for Bernoulli percolation on quasi-transitive nonunimodular graphs. As an application, we show that the uniqueness threshold of any quasi-transitive graph is also the threshold for connectivity d
We consider the discrete Boolean model of percolation on graphs satisfying a doubling metric condition. We study sufficient conditions on the distribution of the radii of balls placed at the points of a Bernoulli point process for the absence of perc
Consider an anisotropic independent bond percolation model on the $d$-dimensional hypercubic lattice, $dgeq 2$, with parameter $p$. We show that the two point connectivity function $P_{p}({(0,dots,0)leftrightarrow (n,0,dots,0)})$ is a monotone functi