ﻻ يوجد ملخص باللغة العربية
In this paper we present our approach to tackle the Implicit Emotion Shared Task (IEST) organized as part of WASSA 2018 at EMNLP 2018. Given a tweet, from which a certain word has been removed, we are asked to predict the emotion of the missing word. In this work, we experiment with neural Transfer Learning (TL) methods. Our models are based on LSTM networks, augmented with a self-attention mechanism. We use the weights of various pretrained models, for initializing specific layers of our networks. We leverage a big collection of unlabeled Twitter messages, for pretraining word2vec word embeddings and a set of diverse language models. Moreover, we utilize a sentiment analysis dataset for pretraining a model, which encodes emotion related information. The submitted model consists of an ensemble of the aforementioned TL models. Our team ranked 3rd out of 30 participants, achieving an F1 score of 0.703.
In this paper we present deep-learning models that submitted to the SemEval-2018 Task~1 competition: Affect in Tweets. We participated in all subtasks for English tweets. We propose a Bi-LSTM architecture equipped with a multi-layer self attention me
In this paper we present a deep-learning model that competed at SemEval-2018 Task 2 Multilingual Emoji Prediction. We participated in subtask A, in which we are called to predict the most likely associated emoji in English tweets. The proposed archit
In this paper we present two deep-learning systems that competed at SemEval-2018 Task 3 Irony detection in English tweets. We design and ensemble two independent models, based on recurrent neural networks (Bi-LSTM), which operate at the word and char
In this work, we propose an ensemble of classifiers to distinguish between various degrees of abnormalities of the heart using Phonocardiogram (PCG) signals acquired using digital stethoscopes in a clinical setting, for the INTERSPEECH 2018 Computati
Many paralinguistic tasks are closely related and thus representations learned in one domain can be leveraged for another. In this paper, we investigate how knowledge can be transferred between three paralinguistic tasks: speaker, emotion, and gender