ﻻ يوجد ملخص باللغة العربية
In this work, we propose an ensemble of classifiers to distinguish between various degrees of abnormalities of the heart using Phonocardiogram (PCG) signals acquired using digital stethoscopes in a clinical setting, for the INTERSPEECH 2018 Computational Paralinguistics (ComParE) Heart Beats SubChallenge. Our primary classification framework constitutes a convolutional neural network with 1D-CNN time-convolution (tConv) layers, which uses features transferred from a model trained on the 2016 Physionet Heart Sound Database. We also employ a Representation Learning (RL) approach to generate features in an unsupervised manner using Deep Recurrent Autoencoders and use Support Vector Machine (SVM) and Linear Discriminant Analysis (LDA) classifiers. Finally, we utilize an SVM classifier on a high-dimensional segment-level feature extracted using various functionals on short-term acoustic features, i.e., Low-Level Descriptors (LLD). An ensemble of the three different approaches provides a relative improvement of 11.13% compared to our best single sub-system in terms of the Unweighted Average Recall (UAR) performance metric on the evaluation dataset.
Automated heart sounds classification is a much-required diagnostic tool in the view of increasing incidences of heart related diseases worldwide. In this study, we conduct a comprehensive study of heart sounds classification by using various supervi
In this paper, we present a method called HODGEPODGEfootnotemark[1] for large-scale detection of sound events using weakly labeled, synthetic, and unlabeled data proposed in the Detection and Classification of Acoustic Scenes and Events (DCASE) 2019
While recent studies on semi-supervised learning have shown remarkable progress in leveraging both labeled and unlabeled data, most of them presume a basic setting of the model is randomly initialized. In this work, we consider semi-supervised learni
Graphs have become increasingly popular in modeling structures and interactions in a wide variety of problems during the last decade. Graph-based clustering and semi-supervised classification techniques have shown impressive performance. This paper p
We consider the task of learning a classifier from the feature space $mathcal{X}$ to the set of classes $mathcal{Y} = {0, 1}$, when the features can be partitioned into class-conditionally independent feature sets $mathcal{X}_1$ and $mathcal{X}_2$. W