ﻻ يوجد ملخص باللغة العربية
In this paper we present two deep-learning systems that competed at SemEval-2018 Task 3 Irony detection in English tweets. We design and ensemble two independent models, based on recurrent neural networks (Bi-LSTM), which operate at the word and character level, in order to capture both the semantic and syntactic information in tweets. Our models are augmented with a self-attention mechanism, in order to identify the most informative words. The embedding layer of our word-level model is initialized with word2vec word embeddings, pretrained on a collection of 550 million English tweets. We did not utilize any handcrafted features, lexicons or external datasets as prior information and our models are trained end-to-end using back propagation on constrained data. Furthermore, we provide visualizations of tweets with annotations for the salient tokens of the attention layer that can help to interpret the inner workings of the proposed models. We ranked 2nd out of 42 teams in Subtask A and 2nd out of 31 teams in Subtask B. However, post-task-completion enhancements of our models achieve state-of-the-art results ranking 1st for both subtasks.
In this paper we present deep-learning models that submitted to the SemEval-2018 Task~1 competition: Affect in Tweets. We participated in all subtasks for English tweets. We propose a Bi-LSTM architecture equipped with a multi-layer self attention me
In this paper we present a deep-learning model that competed at SemEval-2018 Task 2 Multilingual Emoji Prediction. We participated in subtask A, in which we are called to predict the most likely associated emoji in English tweets. The proposed archit
In this paper we present our approach to tackle the Implicit Emotion Shared Task (IEST) organized as part of WASSA 2018 at EMNLP 2018. Given a tweet, from which a certain word has been removed, we are asked to predict the emotion of the missing word.
This paper describes the Duluth systems that participated in SemEval--2019 Task 6, Identifying and Categorizing Offensive Language in Social Media (OffensEval). For the most part these systems took traditional Machine Learning approaches that built c
This paper describes the winning contribution to SemEval-2020 Task 1: Unsupervised Lexical Semantic Change Detection (Subtask 2) handed in by team UG Student Intern. We present an ensemble model that makes predictions based on context-free and contex