ﻻ يوجد ملخص باللغة العربية
Molecular dynamics simulations have been performed to understand the variations in deformation mechanisms of Cu nanowires as a function of orientation and loading mode (tension or compression). Cu nanowires of different crystallographic orientations distributed uniformly on the standard stereographic triangle have been considered under tensile and compressive loading. The simulation results indicate that under compressive loading, the orientations close to $<$100$>$ corner deform by twinning mechanism, while the remaining orientations deform by dislocation slip. On the other hand, all the nanowires deform by twinning mechanism under tensile loading. Further, the orientations close to $<$110$>$ and $<$111$>$ corner exhibit tension-compression asymmetry in deformation mechanisms. In addition to deformation mechanisms, Cu nanowires also display tension-compression asymmetry in yield stress. The orientations close to $<$001$>$ corner exhibits higher yield stress in tension than in compression, while the opposite behaviour (higher yield stress in compression than in tension) has been observed in orientations close to $<$110$>$ and $<$111$>$ corners. For the specific orientation of $<$102$>$, the yield stress asymmetry has not been observed. The tension-compression asymmetry in deformation mechanisms has been explained based on the parameter $alpha_M$, defined as the ratio of Schmid factors for leading and trailing partial dislocations. Similarly, the asymmetry in yield stress values has been attributed to the different Schmid factor values for leading partial dislocations under tensile and compressive loading.
Molecular dynamics simulations revealed significant difference in deformation behaviour of $<$100$>$ BCC Fe nanowires with and without twist boundary. The plastic deformation in perfect $<$100$>$ BCC Fe nanowire was dominated by twinning and reorient
The role of reduced dimensionality and of the surface on electron-phonon (e-ph) coupling in silicon nanowires is determined from first principles. Surface termination and chemistry is found to have a relatively small influence, whereas reduced dimens
Molecular dynamics simulations performed on <110> Cu nanopillars revealed significant difference in deformation behavior of nanopillars with and without twin boundary. The plastic deformation in single crystal Cu nanopillar without twin boundary was
Tungsten carbide cobalt hardmetals are commonly used as cutting tools subject to high operation temperature and pressures, where the mechanical performance of the tungsten carbide phase affects the wear and lifetime of the material. In this study, th
The interaction between a spin polarized dc electrical current and spin wave modes of a cylindrical nanowire is investigated in this report. We found that close to the critical current, the uniform mode is suppressed, while the edge mode starts to pr