ﻻ يوجد ملخص باللغة العربية
Tungsten carbide cobalt hardmetals are commonly used as cutting tools subject to high operation temperature and pressures, where the mechanical performance of the tungsten carbide phase affects the wear and lifetime of the material. In this study, the mechanical behaviour of the isolated tungsten carbide (WC) phase was investigated using single crystal micropillar compression. Micropillars 1-5 ${mu}$m in diameter, in two crystal orientations, were fabricated using focused ion beam (FIB) machining and subsequently compressed between room temperature and 600 {deg}C. The activated plastic deformation mechanisms were strongly anisotropic and weakly temperature dependent. The flow stresses of basal-oriented pillars were about three times higher than the prismatic pillars, and pillars of both orientations soften slightly with increasing temperature. The basal pillars tended to deform by either unstable cracking or unstable yield, whereas the prismatic pillars deformed by slip-mediated cracking. However, the active deformation mechanisms were also sensitive to pillar size and shape. Slip trace analysis of the deformed pillars showed that {10-10} prismatic planes were the dominant slip plane in WC. Basal slip was also identified as a secondary slip system, activated at high temperatures.
The plastic deformation mechanisms of tungsten carbide at room and elevated temperatures influence the wear and fracture properties of WC-Co hardmetal composite materials. Although the active slip planes and residual defect populations of room-temper
Coupling of nano-indentation and crystal plasticity finite element (CPFE) simulations is widely used to quantitatively probe the small-scale mechanical behaviour of materials. Earlier studies showed that CPFE can successfully reproduce the load-displ
Molecular dynamics simulations have been performed to understand the variations in deformation mechanisms of Cu nanowires as a function of orientation and loading mode (tension or compression). Cu nanowires of different crystallographic orientations
The effect of Ca and Zn in solid solution on the critical resolved shear stress (CRSS) of <a> basal slip, tensile twinning and <c+a> pyramidal slip in Mg alloys has been measured through compression tests on single crystal micropillars with different
Deformation twinning in pure aluminum has been considered to be a unique property of nanostructured aluminum. A lingering mystery is whether deformation twinning occurs in coarse-grained or single-crystal aluminum, at scales beyond nanotwins. Here, w