ﻻ يوجد ملخص باللغة العربية
Nanophotonic structures in single--crystal diamond (SCD) that simultaneously confine and co-localize photons and phonons are highly desirable for applications in quantum information science and optomechanics. Here we describe an optimized process for etching SCD microdisk structures designed for optomechanics applications. This process allows the optical quality factor, $Q$, of these devices to be enhanced by a factor of 4 over previous demonstrations to $Q sim 335,000$, which is sufficient to enable sideband resolved coherent cavity optomechanical experiments. Through analysis of optical loss and backscattering rates we find that $Q$ remains limited by surface imperfections. We also describe a technique for altering microdisk pedestal geometry which could enable reductions in mechanical dissipation.
Single-crystal diamond cavity optomechanical devices are a promising example of a hybrid quantum system: by coupling mechanical resonances to both light and electron spins, they can enable new ways for photons to control solid state qubits. However,
Polaritons enable the resonant coupling of excitons and photons to vibrations in the application-relevant super high frequency (SHF, 3-30 GHz) domain. We introduce a novel platform for coherent optomechanics based on the coupling of exciton-polariton
Diamond hosts optically active color centers with great promise in quantum computation, networking, and sensing. Realization of such applications is contingent upon the integration of color centers into photonic circuits. However, current diamond qua
Observing a physical quantity without disturbing it is a key capability for the control of individual quantum systems. Such back-action-evading or quantum-non-demolition measurements were first introduced in the 1970s in the context of gravitational
We show that nitrogen-vacancy (NV) centers in diamond can produce a novel quantum hyperbolic metamaterial. We demonstrate that a hyperbolic dispersion relation in diamond with NV centers can be engineered and dynamically tuned by applying a magnetic