ترغب بنشر مسار تعليمي؟ اضغط هنا

Cooling-by-measurement and mechanical state tomography via pulsed optomechanics

124   0   0.0 ( 0 )
 نشر من قبل Michael Vanner
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Observing a physical quantity without disturbing it is a key capability for the control of individual quantum systems. Such back-action-evading or quantum-non-demolition measurements were first introduced in the 1970s in the context of gravitational wave detection to measure weak forces on test masses by high precision monitoring of their motion. Now, such techniques have become an indispensable tool in quantum science for preparing, manipulating, and detecting quantum states of light, atoms, and other quantum systems. Here we experimentally perform rapid optical quantum-noise-limited measurements of the position of a mechanical oscillator by using pulses of light with a duration much shorter than a period of mechanical motion. Using this back-action evading interaction we performed both state preparation and full state tomography of the mechanical motional state. We have reconstructed mechanical states with a position uncertainty reduced to 19 pm, limited by the quantum fluctuations of the optical pulse, and we have performed `cooling-by-measurement to reduce the mechanical mode temperature from an initial 1100 K to 16 K. Future improvements to this technique may allow for quantum squeezing of mechanical motion, even from room temperature, and reconstruction of non-classical states exhibiting negative regions in their phase-space quasi-probability distribution.

قيم البحث

اقرأ أيضاً

Entanglement generation at a macroscopic scale offers an exciting avenue to develop new quantum technologies and study fundamental physics on a tabletop. Cavity quantum optomechanics provides an ideal platform to generate and exploit such phenomena o wing to the precision of quantum optics combined with recent experimental advances in optomechanical devices. In this work, we propose schemes operating outside the resolved-sideband regime, to prepare and verify both optical-mechanical and mechanical-mechanical entanglement. Our schemes employ pulsed interactions with a duration much less than the mechanical period and, together with homodyne measurements, can both generate and characterize these types of entanglement. To improve the performance of our schemes, a precooling stage comprising prior pulses can be utilized to increase the amount of entanglement prepared, and local optical squeezers may be used to provide resilience against open-system dynamics. The entanglement generated by our schemes is quantified using the logarithmic negativity and is analysed with respect to the strength of the pulsed optomechanical interactions for realistic experimental scenarios including mechanical decoherence and optical loss. Two separate schemes for mechanical entanglement generation are introduced and compared: one scheme based on an optical interferometric design, and the other comprising sequential optomechanical interactions. The pulsed nature of our protocols provides more direct access to these quantum correlations in the time domain, with applications including quantum metrology and tests of quantum decoherence. By considering a parameter set based on recent experiments, the feasibility to generate significant entanglement with our schemes, even with large optical losses, is demonstrated.
Studying mechanical resonators via radiation pressure offers a rich avenue for the exploration of quantum mechanical behavior in a macroscopic regime. However, quantum state preparation and especially quantum state reconstruction of mechanical oscill ators remains a significant challenge. Here we propose a scheme to realize quantum state tomography, squeezing and state purification of a mechanical resonator using short optical pulses. The scheme presented allows observation of mechanical quantum features despite preparation from a thermal state and is shown to be experimentally feasible using optical microcavities. Our framework thus provides a promising means to explore the quantum nature of massive mechanical oscillators and can be applied to other systems such as trapped ions.
We propose two measurement-based schemes to cool a nonlinear mechanical resonator down to energies close to that of its ground state. The protocols rely on projective measurements of a spin degree of freedom, which interacts with the resonator throug h a Jaynes-Cummings interaction. We show the performance of these cooling schemes, that can be either concatenated -- i.e. built by repeating a sequence of dynamical evolutions followed by projective measurements -- or single-shot. We characterize the performance of both cooling schemes with numerical simulations, and pinpoint the effects of decoherence and noise mechanisms. Due to the ubiquity and experimental relevance of the Jaynes-Cummings model, we argue that our results can be applied in a variety of experimental setups.
Quantum optical measurement techniques offer a rich avenue for quantum control of mechanical oscillators via cavity optomechanics. In particular, a powerful yet little explored combination utilizes optical measurements to perform heralded non-Gaussia n mechanical state preparation and to determine the mechanical phase-space distribution. Here, we experimentally perform heralded single- and multi-phonon subtraction via photon counting to a room temperature mechanical thermal state with a Brillouin optomechanical system, and use optical heterodyne detection to measure the $s$-parameterized Wigner phase-space distribution of the non-Gaussian mechanical states generated. The techniques developed here will be useful for a broad range of both applied and fundamental studies that exploit quantum-state engineering and reconstruction of mechanical motional states.
We investigate a general scheme for generating, either dynamically or in the steady state, continuous variable entanglement between two mechanical resonators with different frequencies. We employ an optomechanical system in which a single optical cav ity mode driven by a suitably chosen two-tone field is coupled to the two resonators. Significantly large mechanical entanglement can be achieved, which is extremely robust with respect to temperature.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا