ﻻ يوجد ملخص باللغة العربية
Polaritons enable the resonant coupling of excitons and photons to vibrations in the application-relevant super high frequency (SHF, 3-30 GHz) domain. We introduce a novel platform for coherent optomechanics based on the coupling of exciton-polaritons and electrically driven SHF longitudinal acoustic phonons confined within the spacer region of a planar Bragg microcavity. An intrinsic property of the microcavity platform is the back-feeding of phonons via reflections at the sample boundaries, which enables frequency x quality factors products exceeding 10^14 Hz as well as huge modulation amplitudes of the optical transition energies (up to 8 meV). We show that the modulation is dominated by the phonon-induced energy shifts of the excitonic polariton component, thus leading to an oscillatory transition between the regimes of weak and strong light-matter coupling. These results open the way for polariton-based coherent optomechanics in the non-adiabatic, side-band-resolved regime of coherent control.
Semiconducting transition-metal dichalcogenides (TMDCs) provide a fascinating discovery platform for strong light-matter interaction effects in the visible spectrum at ambient conditions. While most of the work has focused on hybridizing excitons wit
We study the cavity mode frequencies of a Fabry-Perot cavity containing two vibrating dielectric membranes. We derive the equations for the mode resonances and provide approximate analytical solutions for them as a function of the membrane positions,
Polaritons formed by the coupling of light and material excitations such as plasmons, phonons, or excitons enable light-matter interactions at the nanoscale beyond what is currently possible with conventional optics. Recently, significant interest ha
Nanophotonic structures in single--crystal diamond (SCD) that simultaneously confine and co-localize photons and phonons are highly desirable for applications in quantum information science and optomechanics. Here we describe an optimized process for
An infinite chain of driven-dissipative condensate spins with uniform nearest-neighbor coherent coupling is solved analytically and investigated numerically. Above a critical occupation threshold the condensates undergo spontaneous spin bifurcation (