ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum non-Markovian behavior at the chaos border

121   0   0.0 ( 0 )
 نشر من قبل Ignacio Garcia-Mata
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this work we study the non-Markovian behaviour of a qubit coupled to an environment in which the corresponding classical dynamics change from integrable to chaotic. We show that in the transition region, where the dynamics has both regular islands and chaotic areas, the average non-Markovian behaviour is enhanced to values even larger than in the regular regime. This effect can be related to the non-Markovian behaviour as a function of the the initial state of the environment, where maxima are attained at the regions dividing separate areas in classical phase space, particularly at the borders between chaotic and regular regions. Moreover, we show that the fluctuations of the fidelity of the environment -- which determine the non-Markovianity measure -- give a precise image of the classical phase portrait.



قيم البحث

اقرأ أيضاً

189 - I. Garcia-Mata , C. Pineda , 2012
We study the influence of a chaotic environment in the evolution of an open quantum system. We show that there is an inverse relation between chaos and non-Markovianity. In particular, we remark on the deep relation of the short time non-Markovian be havior with the revivals of the average fidelity amplitude-a fundamental quantity used to measure sensitivity to perturbations and to identify quantum chaos. The long time behavior is established as a finite size effect which vanishes for large enough environments.
Non-Markovian quantum effects are typically observed in systems interacting with structured reservoirs. Discrete-time quantum walks are prime example of such systems in which, quantum memory arises due to the controlled interaction between the coin a nd position degrees of freedom. Here we show that the information backflow that quantifies memory effects can be enhanced when the particle is subjected to uncorrelated static or dynamic disorder. The presence of disorder in the system leads to localization effects in 1-dimensional quantum walks. We shown that it is possible to infer about the nature of localization in position space by monitoring the information backflow in the reduced system. Further, we study other useful properties of quantum walk such as entanglement, interference and its connection to quantum non-Markovianity.
We review the most recent developments in the theory of open quantum systems focusing on situations in which the reservoir memory effects, due to long-lasting and non-negligible correlations between system and environment, play a crucial role. These systems are often referred to as non-Markovian systems. After a brief summary of different measures of non-Markovianity that have been introduced over the last few years we restrict our analysis to the investigation of information flow between system and environment. Within this framework we introduce an important application of non-Markovianity, namely its use as a quantum probe of complex quantum systems. To illustrate this point we consider quantum probes of ultracold gases, spin chains, and trapped ion crystals and show how properties of these systems can be extracted by means of non-Markovianity measures.
The rapidly developing quantum technologies have put forward a requirement to precisely control and measure temperature of microscopic matters at quantum level. Many quantum thermometry schemes have been proposed. However, precisely measuring low tem perature is still extremely challenging because the sensing errors obtained in these schemes tend to divergence with decreasing temperature. Using a continuous-variable system as a thermometer, we propose a non-Markovian quantum thermometry to measure the temperature of a quantum reservoir. A mechanism to make the sensing error $delta T$ scale with the temperature $T$ as $delta Tsimeq T$ in the full-temperature regime is discovered. Our analysis reveals that it is the quantum criticality of the total thermometer-reservoir system that causes this enhanced sensitivity. Solving the long-standing and challenging error-divergence problem, our result gives an efficient way to precisely measure the low temperature of quantum systems.
The continuous monitoring of a quantum system strongly influences the emergence of chaotic dynamics near the transition from the quantum regime to the classical regime. Here we present a feedback control scheme that uses adaptive measurement techniqu es to control the degree of chaos in the driven-damped quantum Duffing oscillator. This control relies purely on the measurement backaction on the system, making it a uniquely quantum control, and is only possible due to the sensitivity of chaos to measurement. We quantify the effectiveness of our control by numerically computing the quantum Lyapunov exponent over a wide range of parameters. We demonstrate that adaptive measurement techniques can control the onset of chaos in the system, pushing the quantum-classical boundary further into the quantum regime.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا