ترغب بنشر مسار تعليمي؟ اضغط هنا

The Complexity of $(Delta + 1)$Coloring inCongested Clique, Massively Parallel Computation,and Centralized Local Computation

36   0   0.0 ( 0 )
 نشر من قبل Manuela Fischer
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We present new randomized algorithms that improve the complexity of the classic $(Delta+1)$-coloring problem, and its generalization $(Delta+1)$-list-coloring, in three well-studied models of distributed, parallel, and centralized computation: Distributed Congested Clique: We present an $O(1)$-round randomized algorithm for $(Delta+1)$-list coloring in the congested clique model of distributed computing. This settles the asymptotic complexity of this problem. It moreover improves upon the $O(log^ast Delta)$-round randomized algorithms of Parter and Su [DISC18] and $O((loglog Delta)cdot log^ast Delta)$-round randomized algorithm of Parter [ICALP18]. Massively Parallel Computation: We present a $(Delta+1)$-list coloring algorithm with round complexity $O(sqrt{loglog n})$ in the Massively Parallel Computation (MPC) model with strongly sublinear memory per machine. This algorithm uses a memory of $O(n^{alpha})$ per machine, for any desirable constant $alpha>0$, and a total memory of $widetilde{O}(m)$, where $m$ is the size of the graph. Notably, this is the first coloring algorithm with sublogarithmic round complexity, in the sublinear memory regime of MPC. For the quasilinear memory regime of MPC, an $O(1)$-round algorithm was given very recently by Assadi et al. [SODA19]. Centralized Local Computation: We show that $(Delta+1)$-list coloring can be solved with $Delta^{O(1)} cdot O(log n)$ query complexity, in the centralized local computation model. The previous state-of-the-art for $(Delta+1)$-list coloring in the centralized local computation model are based on simulation of known LOCAL algorithms.

قيم البحث

اقرأ أيضاً

We introduce the Adaptive Massively Parallel Computation (AMPC) model, which is an extension of the Massively Parallel Computation (MPC) model. At a high level, the AMPC model strengthens the MPC model by storing all messages sent within a round in a distributed data store. In the following round, all machines are provided with random read access to the data store, subject to the same constraints on the total amount of communication as in the MPC model. Our model is inspired by the previous empirical studies of distributed graph algorithms using MapReduce and a distributed hash table service. This extension allows us to give new graph algorithms with much lower round complexities compared to the best known solutions in the MPC model. In particular, in the AMPC model we show how to solve maximal independent set in $O(1)$ rounds and connectivity/minimum spanning tree in $O(loglog_{m/n} n)$ rounds both using $O(n^delta)$ space per machine for constant $delta < 1$. In the same memory regime for MPC, the best known algorithms for these problems require polylog $n$ rounds. Our results imply that the 2-Cycle conjecture, which is widely believed to hold in the MPC model, does not hold in the AMPC model.
124 - Noga Alon , Sepehr Assadi 2020
A recent palette sparsification theorem of Assadi, Chen, and Khanna [SODA19] states that in every $n$-vertex graph $G$ with maximum degree $Delta$, sampling $O(log{n})$ colors per each vertex independently from $Delta+1$ colors almost certainly allow s for proper coloring of $G$ from the sampled colors. Besides being a combinatorial statement of its own independent interest, this theorem was shown to have various applications to design of algorithms for $(Delta+1)$ coloring in different models of computation on massive graphs such as streaming or sublinear-time algorithms. In this paper, we further study palette sparsification problems: * We prove that for $(1+varepsilon) Delta$ coloring, sampling only $O_{varepsilon}(sqrt{log{n}})$ colors per vertex is sufficient and necessary to obtain a proper coloring from the sampled colors. * A natural family of graphs with chromatic number much smaller than $(Delta+1)$ are triangle-free graphs which are $O(frac{Delta}{ln{Delta}})$ colorable. We prove that sampling $O(Delta^{gamma} + sqrt{log{n}})$ colors per vertex is sufficient and necessary to obtain a proper $O_{gamma}(frac{Delta}{ln{Delta}})$ coloring of triangle-free graphs. * We show that sampling $O_{varepsilon}(log{n})$ colors per vertex is sufficient for proper coloring of any graph with high probability whenever each vertex is sampling from a list of $(1+varepsilon) cdot deg(v)$ arbitrary colors, or even only $deg(v)+1$ colors when the lists are the sets ${1,ldots,deg(v)+1}$. Similar to previous work, our new palette sparsification results naturally lead to a host of new and/or improved algorithms for vertex coloring in different models including streaming and sublinear-time algorithms.
We consider a decentralized graph coloring model where each vertex only knows its own color and whether some neighbor has the same color as it. The networking community has studied this model extensively due to its applications to channel selection, rate adaptation, etc. Here, we analyze variants of a simple algorithm of Bhartia et al. [Proc., ACM MOBIHOC, 2016]. In particular, we introduce a variant which requires only $O(nlogDelta)$ expected recolorings that generalizes the coupon collector problem. Finally, we show that the $O(nDelta)$ bound Bhartia et al. achieve for their algorithm still holds and is tight in adversarial scenarios.
We consider the task of designing Local Computation Algorithms (LCA) for applications of the Lov{a}sz Local Lemma (LLL). LCA is a class of sublinear algorithms proposed by Rubinfeld et al.~cite{Ronitt} that have received a lot of attention in recent years. The LLL is an existential, sufficient condition for a collection of sets to have non-empty intersection (in applications, often, each set comprises all objects having a certain property). The ground-breaking algorithm of Moser and Tardos~cite{MT} made the LLL fully constructive, following earlier results by Beck~cite{beck_lll} and Alon~cite{alon_lll} giving algorithms under significantly stronger LLL-like conditions. LCAs under those stronger conditions were given in~cite{Ronitt}, where it was asked if the Moser-Tardos algorithm can be used to design LCAs under the standard LLL condition. The main contribution of this paper is to answer this question affirmatively. In fact, our techniques yield LCAs for settings beyond the standard LLL condition.
163 - Saachi Jain , Matei Zaharia 2019
We consider the problem of finding lower bounds on the I/O complexity of arbitrary computations in a two level memory hierarchy. Executions of complex computations can be formalized as an evaluation order over the underlying computation graph. Howeve r, prior methods for finding I/O lower bounds leverage the graph structures for specific problems (e.g matrix multiplication) which cannot be applied to arbitrary graphs. In this paper, we first present a novel method to bound the I/O of any computation graph using the first few eigenvalues of the graphs Laplacian. We further extend this bound to the parallel setting. This spectral bound is not only efficiently computable by power iteration, but can also be computed in closed form for graphs with known spectra. We apply our spectral method to compute closed-form analytical bounds on two computation graphs (the Bellman-Held-Karp algorithm for the traveling salesman problem and the Fast Fourier Transform), as well as provide a probabilistic bound for random Erdos Renyi graphs. We empirically validate our bound on four computation graphs, and find that our method provides tighter bounds than current empirical methods and behaves similarly to previously published I/O bounds.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا