ﻻ يوجد ملخص باللغة العربية
We present electron and phonon spectral functions calculated from determinant quantum Monte Carlo simulations of the half-filled two-dimensional Hubbard-Holstein model on a square lattice. By tuning the relative electron-electron ($e$-$e$) and electron-phonon ($e$-$ph$) interaction strengths, we show the electron spectral function evolving between antiferromagnetic insulating, metallic, and charge density wave insulating phases. The phonon spectra concurrently gain a strong momentum dependence and soften in energy upon approaching the charge density wave phase. In particular, we study how the $e$-$e$ and $e$-$ph$ interactions renormalize the spectra, and analyze how the interplay of these interactions influence the spectral renormalizations. We find that the presence of both interactions suppresses the amount of renormalization at low energy, thus allowing the emergence of a metallic phase. These findings demonstrate the importance of considering the influence of multiple interactions in spectroscopically determining any one interaction strength in strongly correlated materials.
We show that, by an appropriate choice of auxiliary fields and exact integration of the phonon degrees of freedom, it is possible to define a sign-free path integral for the so called Hubbard-Holstein model at half-filling. We use a statistical metho
We study the phase diagram of the ionic Hubbard model (IHM) at half-filling using dynamical mean field theory (DMFT), with two impurity solvers, namely, iterated perturbation theory (IPT) and continuous time quantum Monte Carlo (CTQMC). The physics o
We study the interplay between the electron-phonon (e-ph) and on-site electron-electron (e-e) interactions in a three-orbital Hubbard-Holstein model on an extended one-dimensional lattice using determinant quantum Monte Carlo. For weak e-e and e-ph i
Over the past several years, reliable Quantum Monte Carlo results for the charge density wave transition temperature $T_{cdw}$ of the half-filled two dimensional Holstein model in square and honeycomb lattices have become available for the first time
We investigate the ionic Hubbard model (IHM) at half-filling in the limit of strong correlations and large ionic potential. The low energy effective Hamiltonian in this limit, obtained by a similarity transformation, is a modified $t-J$ model with ef