ترغب بنشر مسار تعليمي؟ اضغط هنا

Temporal Bilinear Networks for Video Action Recognition

293   0   0.0 ( 0 )
 نشر من قبل Yanghao Li
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Temporal modeling in videos is a fundamental yet challenging problem in computer vision. In this paper, we propose a novel Temporal Bilinear (TB) model to capture the temporal pairwise feature interactions between adjacent frames. Compared with some existing temporal methods which are limited in linear transformations, our TB model considers explicit quadratic bilinear transformations in the temporal domain for motion evolution and sequential relation modeling. We further leverage the factorized bilinear model in linear complexity and a bottleneck network design to build our TB blocks, which also constrains the parameters and computation cost. We consider two schemes in terms of the incorporation of TB blocks and the original 2D spatial convolutions, namely wide and deep Temporal Bilinear Networks (TBN). Finally, we perform experiments on several widely adopted datasets including Kinetics, UCF101 and HMDB51. The effectiveness of our TBNs is validated by comprehensive ablation analyses and comparisons with various state-of-the-art methods.

قيم البحث

اقرأ أيضاً

418 - Lili Meng , Bo Zhao , Bo Chang 2018
Inspired by the observation that humans are able to process videos efficiently by only paying attention where and when it is needed, we propose an interpretable and easy plug-in spatial-temporal attention mechanism for video action recognition. For s patial attention, we learn a saliency mask to allow the model to focus on the most salient parts of the feature maps. For temporal attention, we employ a convolutional LSTM based attention mechanism to identify the most relevant frames from an input video. Further, we propose a set of regularizers to ensure that our attention mechanism attends to coherent regions in space and time. Our model not only improves video action recognition accuracy, but also localizes discriminative regions both spatially and temporally, despite being trained in a weakly-supervised manner with only classification labels (no bounding box labels or time frame temporal labels). We evaluate our approach on several public video action recognition datasets with ablation studies. Furthermore, we quantitatively and qualitatively evaluate our models ability to localize discriminative regions spatially and critical frames temporally. Experimental results demonstrate the efficacy of our approach, showing superior or comparable accuracy with the state-of-the-art methods while increasing model interpretability.
Efficient spatiotemporal modeling is an important yet challenging problem for video action recognition. Existing state-of-the-art methods exploit motion clues to assist in short-term temporal modeling through temporal difference over consecutive fram es. However, insignificant noises will be inevitably introduced due to the camera movement. Besides, movements of different actions can vary greatly. In this paper, we propose a Temporal Saliency Integration (TSI) block, which mainly contains a Salient Motion Excitation (SME) module and a Cross-scale Temporal Integration (CTI) module. Specifically, SME aims to highlight the motion-sensitive area through local-global motion modeling, where the saliency alignment and pyramidal feature difference are conducted successively between neighboring frames to capture motion dynamics with less noises caused by misaligned background. CTI is designed to perform multi-scale temporal modeling through a group of separate 1D convolutions respectively. Meanwhile, temporal interactions across different scales are integrated with attention mechanism. Through these two modules, long short-term temporal relationships can be encoded efficiently by introducing limited additional parameters. Extensive experiments are conducted on several popular benchmarks (i.e., Something-Something V1 & V2, Kinetics-400, UCF-101, and HMDB-51), which demonstrate the effectiveness and superiority of our proposed method.
141 - Yang Liu , Keze Wang , Haoyuan Lan 2021
Attempt to fully discover the temporal diversity and chronological characteristics for self-supervised video representation learning, this work takes advantage of the temporal dependencies within videos and further proposes a novel self-supervised me thod named Temporal Contrastive Graph Learning (TCGL). In contrast to the existing methods that ignore modeling elaborate temporal dependencies, our TCGL roots in a hybrid graph contrastive learning strategy to jointly regard the inter-snippet and intra-snippet temporal dependencies as self-supervision signals for temporal representation learning. To model multi-scale temporal dependencies, our TCGL integrates the prior knowledge about the frame and snippet orders into graph structures, i.e., the intra-/inter- snippet temporal contrastive graphs. By randomly removing edges and masking nodes of the intra-snippet graphs or inter-snippet graphs, our TCGL can generate different correlated graph views. Then, specific contrastive learning modules are designed to maximize the agreement between nodes in different views. To adaptively learn the global context representation and recalibrate the channel-wise features, we introduce an adaptive video snippet order prediction module, which leverages the relational knowledge among video snippets to predict the actual snippet orders. Experimental results demonstrate the superiority of our TCGL over the state-of-the-art methods on large-scale action recognition and video retrieval benchmarks.
118 - Limin Wang , Zhan Tong , Bin Ji 2020
Temporal modeling still remains challenging for action recognition in videos. To mitigate this issue, this paper presents a new video architecture, termed as Temporal Difference Network (TDN), with a focus on capturing multi-scale temporal informatio n for efficient action recognition. The core of our TDN is to devise an efficient temporal module (TDM) by explicitly leveraging a temporal difference operator, and systematically assess its effect on short-term and long-term motion modeling. To fully capture temporal information over the entire video, our TDN is established with a two-level difference modeling paradigm. Specifically, for local motion modeling, temporal difference over consecutive frames is used to supply 2D CNNs with finer motion pattern, while for global motion modeling, temporal difference across segments is incorporated to capture long-range structure for motion feature excitation. TDN provides a simple and principled temporal modeling framework and could be instantiated with the existing CNNs at a small extra computational cost. Our TDN presents a new state of the art on the Something-Something V1 & V2 datasets and is on par with the best performance on the Kinetics-400 dataset. In addition, we conduct in-depth ablation studies and plot the visualization results of our TDN, hopefully providing insightful analysis on temporal difference modeling. We release the code at https://github.com/MCG-NJU/TDN.
Graph convolutional networks (GCNs) can effectively capture the features of related nodes and improve the performance of the model. More attention is paid to employing GCN in Skeleton-Based action recognition. But existing methods based on GCNs have two problems. First, the consistency of temporal and spatial features is ignored for extracting features node by node and frame by frame. To obtain spatiotemporal features simultaneously, we design a generic representation of skeleton sequences for action recognition and propose a novel model called Temporal Graph Networks (TGN). Secondly, the adjacency matrix of the graph describing the relation of joints is mostly dependent on the physical connection between joints. To appropriately describe the relations between joints in the skeleton graph, we propose a multi-scale graph strategy, adopting a full-scale graph, part-scale graph, and core-scale graph to capture the local features of each joint and the contour features of important joints. Experiments were carried out on two large datasets and results show that TGN with our graph strategy outperforms state-of-the-art methods.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا