ترغب بنشر مسار تعليمي؟ اضغط هنا

Homological and collapsibility properties of clique complexes

98   0   0.0 ( 0 )
 نشر من قبل Jesus F. Espinoza
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The family of contractible graphs, introduced by A. Ivashchenko, consists of the collection $mathfrak{I}$ of graphs constructed recursively from $K_1$ by contractible transformations. In this paper we show that every graph in a subfamily of $mathfrak{I}$ (the strongly contractible ones) is a collapsible graph (in the simplicial sense), by providing a sequence of elementary collapses induced by removing contractible vertices or edges. In addition, we introduce an algorithm to identify the contractible vertices in any graph and show that there is a natural homomorphism, induced by the inclusion map of graphs, between the homology groups of the clique complex of graphs with the contractible vertices removed. Finally, we show an application of this result to the computation of the persistent homology for the Vietoris-Rips filtration.



قيم البحث

اقرأ أيضاً

195 - Alan Lew 2018
Let $mathcal{H}$ be a hypergraph of rank $r$. We show that the simplicial complex whose simplices are the hypergraphs $mathcal{F}subsetmathcal{H}$ with covering number at most $p$ is $left(binom{r+p}{r}-1right)$-collapsible, and the simplicial comple x whose simplices are the pairwise intersecting hypergraphs $mathcal{F}subsetmathcal{H}$ is $frac{1}{2}binom{2r}{r}$-collapsible.
87 - Anton Dochtermann 2007
It is shown that if T is a connected nontrivial graph and X is an arbitrary finite simplicial complex, then there is a graph G such that the complex Hom(T,G) is homotopy equivalent to X. The proof is constructive, and uses a nerve lemma. Along the wa y several results regarding Hom complexes, exponentials, and subdivision are established that may be of independent interest.
We provide a random simplicial complex by applying standard constructions to a Poisson point process in Euclidean space. It is gigantic in the sense that - up to homotopy equivalence - it almost surely contains infinitely many copies of every compact topological manifold, both in isolation and in percolation.
178 - Anton Dochtermann 2008
The notion of $times$-homotopy from cite{DocHom} is investigated in the context of the category of pointed graphs. The main result is a long exact sequence that relates the higher homotopy groups of the space $Hom_*(G,H)$ with the homotopy groups of $Hom_*(G,H^I)$. Here $Hom_*(G,H)$ is a space which parametrizes pointed graph maps from $G$ to $H$ (a pointed version of the usual $Hom$ complex), and $H^I$ is the graph of based paths in $H$. As a corollary it is shown that $pi_i big(Hom_*(G,H) big) cong [G,Omega^i H]_{times}$, where $Omega H$ is the graph of based closed paths in $H$ and $[G,K]_{times}$ is the set of $times$-homotopy classes of pointed graph maps from $G$ to $K$. This is similar in spirit to the results of cite{BBLL}, where the authors seek a space whose homotopy groups encode a similarly defined homotopy theory for graphs. The categorical connections to those constructions are discussed.
99 - Anton Dochtermann 2006
We investigate a notion of $times$-homotopy of graph maps that is based on the internal hom associated to the categorical product in the category of graphs. It is shown that graph $times$-homotopy is characterized by the topological properties of the $Hom$ complex, a functorial way to assign a poset (and hence topological space) to a pair of graphs; $Hom$ complexes were introduced by Lov{a}sz and further studied by Babson and Kozlov to give topological bounds on chromatic number. Along the way, we also establish some structural properties of $Hom$ complexes involving products and exponentials of graphs, as well as a symmetry result which can be used to reprove a theorem of Kozlov involving foldings of graphs. Graph $times$-homotopy naturally leads to a notion of homotopy equivalence which we show has several equivalent characterizations. We apply the notions of $times$-homotopy equivalence to the class of dismantlable graphs to get a list of conditions that again characterize these. We end with a discussion of graph homotopies arising from other internal homs, including the construction of `$A$-theory associated to the cartesian product in the category of reflexive graphs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا