ترغب بنشر مسار تعليمي؟ اضغط هنا

Gigantic random simplicial complexes

109   0   0.0 ( 0 )
 نشر من قبل Matthias Reitzner
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We provide a random simplicial complex by applying standard constructions to a Poisson point process in Euclidean space. It is gigantic in the sense that - up to homotopy equivalence - it almost surely contains infinitely many copies of every compact topological manifold, both in isolation and in percolation.



قيم البحث

اقرأ أيضاً

There have been several recent articles studying homology of various types of random simplicial complexes. Several theorems have concerned thresholds for vanishing of homology, and in some cases expectations of the Betti numbers. However little seems known so far about limiting distributions of random Betti numbers. In this article we establish Poisson and normal approximation theorems for Betti numbers of different kinds of random simplicial complex: ErdH{o}s-Renyi random clique complexes, random Vietoris-Rips complexes, and random v{C}ech complexes. These results may be of practical interest in topological data analysis.
A flag complex can be defined as a simplicial complex whose simplices correspond to complete subgraphs of its 1-skeleton taken as a graph. In this article, by introducing the notion of s-dismantlability, we shall define the s-homotopy type of a graph and show in particular that two finite graphs have the same s-homotopy type if, and only if, the two flag complexes determined by these graphs have the same simplicial simple-homotopy type (Theorem 2.10, part 1). This result is closely related to similar results established by Barmak and Minian (Adv. in Math., 218 (2008), 87-104) in the framework of posets and we give the relation between the two approaches (theorems 3.5 and 3.7). We conclude with a question about the relation between the s-homotopy and the graph homotopy defined by Chen, Yau and Yeh (Discrete Math., 241(2001), 153-170).
We consider a generalised model of a random simplicial complex, which arises from a random hypergraph. Our model is generated by taking the downward-closure of a non-uniform binomial random hypergraph, in which for each $k$, each set of $k+1$ vertice s forms an edge with some probability $p_k$ independently. As a special case, this contains an extensively studied model of a (uniform) random simplicial complex, introduced by Meshulam and Wallach [Random Structures & Algorithms 34 (2009), no. 3, pp. 408-417]. We consider a higher-dimensional notion of connectedness on this new model according to the vanishing of cohomology groups over an arbitrary abelian group $R$. We prove that this notion of connectedness displays a phase transition and determine the threshold. We also prove a hitting time result for a natural process interpretation, in which simplices and their downward-closure are added one by one. In addition, we determine the asymptotic behaviour of cohomology groups inside the critical window around the time of the phase transition.
180 - Anais Vergne 2013
Random abstract simplicial complex representation provides a mathematical description of wireless networks and their topology. In order to reduce the energy consumption in this type of network, we intend to reduce the number of network nodes without modifying neither the connectivity nor the coverage of the network. In this paper, we present a reduction algorithm that lower the number of points of an abstract simplicial complex in an optimal order while maintaining its topology. Then, we study the complexity of such an algorithm for a network simulated by a binomial point process and represented by a Vietoris-Rips complex.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا