ﻻ يوجد ملخص باللغة العربية
We investigate a notion of $times$-homotopy of graph maps that is based on the internal hom associated to the categorical product in the category of graphs. It is shown that graph $times$-homotopy is characterized by the topological properties of the $Hom$ complex, a functorial way to assign a poset (and hence topological space) to a pair of graphs; $Hom$ complexes were introduced by Lov{a}sz and further studied by Babson and Kozlov to give topological bounds on chromatic number. Along the way, we also establish some structural properties of $Hom$ complexes involving products and exponentials of graphs, as well as a symmetry result which can be used to reprove a theorem of Kozlov involving foldings of graphs. Graph $times$-homotopy naturally leads to a notion of homotopy equivalence which we show has several equivalent characterizations. We apply the notions of $times$-homotopy equivalence to the class of dismantlable graphs to get a list of conditions that again characterize these. We end with a discussion of graph homotopies arising from other internal homs, including the construction of `$A$-theory associated to the cartesian product in the category of reflexive graphs.
The notion of $times$-homotopy from cite{DocHom} is investigated in the context of the category of pointed graphs. The main result is a long exact sequence that relates the higher homotopy groups of the space $Hom_*(G,H)$ with the homotopy groups of
We introduce new methods for understanding the topology of $Hom$ complexes (spaces of homomorphisms between two graphs), mostly in the context of group actions on graphs and posets. We view $Hom(T,-)$ and $Hom(-,G)$ as functors from graphs to posets,
The neighborhood complex of a graph was introduced by Lovasz to provide topological lower bounds on chromatic number, and more general homomorphism complexes of graphs were further studied by Babson and Kozlov. Such `Hom complexes are also related to
It is shown that if T is a connected nontrivial graph and X is an arbitrary finite simplicial complex, then there is a graph G such that the complex Hom(T,G) is homotopy equivalent to X. The proof is constructive, and uses a nerve lemma. Along the wa
A flag complex can be defined as a simplicial complex whose simplices correspond to complete subgraphs of its 1-skeleton taken as a graph. In this article, by introducing the notion of s-dismantlability, we shall define the s-homotopy type of a graph