ﻻ يوجد ملخص باللغة العربية
NbSe$_{2}$ and NbS$_{2}$ are isostructural two-dimensional materials that exhibit contrasting superconducting properties when reduced to the single monolayer limit. Monolayer NbSe$_{2}$ is an Ising superconductor, while there have been no reports of superconductivity in monolayer NbS$_{2}$. NbS$_{x}$Se$_{2-x}$ alloys exhibit an intriguing non-monotonic dependence of the superconducting transition temperature with sulfur content, which has been interpreted as a manifestation of fractal superconductivity. However, several key questions about this result are not known: (1) Does the electronic structure of the alloy differ from the parent compounds, (2) Are spin fluctuations which have been shown to be prominent in monolayer NbSe$_{2}$ also present in the alloys? Using first-principles calculations, we show that the density of states at the Fermi level and the proximity to magnetism in NbS$_{x}$Se$_{2-x}$ alloys are both reduced compared to the parent compound; the former would decrease the transition temperature while the latter would increase it. We also show that Se vacancies, which are likely magnetic pair-breaking defects, may form in large concentrations in NbSe$_{2}$. Based on our results, we suggest an alternative explanation of the non-monotonic behavior the superconducting transition temperature in NbS$_{x}$Se$_{2-x}$ alloys, which does not require the conjecture of multifractality.
The interplay between disorder and superconductivity is a subtle and fascinating phenomenon in quantum many body physics. The conventional superconductors are insensitive to dilute nonmagnetic impurities, known as the Andersons theorem. Destruction o
Recent studies on superconductivity in NbSe$_2$ have demonstrated a large anisotropy in the superconducting critical field when the material is reduced to a single monolayer. Motivated by this recent discovery, we use density functional theory (DFT)
Crystalline two-dimensional (2D) superconductors with low carrier density are an exciting new class of materials in which superconductivity coexists with strong interactions, the effects of complex topology are not obscured by disorder, and electroni
Recent experiments reported gate-induced superconductivity in the monolayer 1T$$-WTe$_2$ which is a two-dimensional topological insulator in its normal state [1, 2]. The in-plane upper critical field $B_{c2}$ is found to exceed the conventional Pauli
It is well known that superconductivity in Fe-based materials is favoured under tetragonal symmetry, whereas competing orders such as spin-density-wave (SDW) and nematic orders emerge or are reinforced upon breaking the fourfold (C4) symmetry. Accord