ترغب بنشر مسار تعليمي؟ اضغط هنا

Ising superconductivity in monolayer niobium dichalcogenide alloys

314   0   0.0 ( 0 )
 نشر من قبل Darshana Wickramaratne
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

NbSe$_{2}$ and NbS$_{2}$ are isostructural two-dimensional materials that exhibit contrasting superconducting properties when reduced to the single monolayer limit. Monolayer NbSe$_{2}$ is an Ising superconductor, while there have been no reports of superconductivity in monolayer NbS$_{2}$. NbS$_{x}$Se$_{2-x}$ alloys exhibit an intriguing non-monotonic dependence of the superconducting transition temperature with sulfur content, which has been interpreted as a manifestation of fractal superconductivity. However, several key questions about this result are not known: (1) Does the electronic structure of the alloy differ from the parent compounds, (2) Are spin fluctuations which have been shown to be prominent in monolayer NbSe$_{2}$ also present in the alloys? Using first-principles calculations, we show that the density of states at the Fermi level and the proximity to magnetism in NbS$_{x}$Se$_{2-x}$ alloys are both reduced compared to the parent compound; the former would decrease the transition temperature while the latter would increase it. We also show that Se vacancies, which are likely magnetic pair-breaking defects, may form in large concentrations in NbSe$_{2}$. Based on our results, we suggest an alternative explanation of the non-monotonic behavior the superconducting transition temperature in NbS$_{x}$Se$_{2-x}$ alloys, which does not require the conjecture of multifractality.

قيم البحث

اقرأ أيضاً

The interplay between disorder and superconductivity is a subtle and fascinating phenomenon in quantum many body physics. The conventional superconductors are insensitive to dilute nonmagnetic impurities, known as the Andersons theorem. Destruction o f superconductivity and even superconductor-insulator transitions occur in the regime of strong disorder. Hence disorder-enhanced superconductivity is rare and has only been observed in some alloys or granular states. Because of the entanglement of various effects, the mechanism of enhancement is still under debate. Here we report well-controlled disorder effect in the recently discovered monolayer NbSe$_2$ superconductor. The superconducting transition temperatures of NbSe$_2$ monolayers are substantially increased by disorder. Realistic theoretical modeling shows that the unusual enhancement possibly arises from the multifractality of electron wave functions. This work provides the first experimental evidence of the multifractal superconducting state.
Recent studies on superconductivity in NbSe$_2$ have demonstrated a large anisotropy in the superconducting critical field when the material is reduced to a single monolayer. Motivated by this recent discovery, we use density functional theory (DFT) calculations to quantitatively address the superconducting properties of bulk and monolayer NbSe$_2$. We demonstrate that NbSe$_2$ is close to a ferromagnetic instability, and analyze our results in the context of experimental measurements of the spin susceptibility in NbSe$_2$. We show how this magnetic instability, which is pronounced in a single monolayer, can enable sizeable singlet-triplet mixing of the superconducting order parameter, contrary to contemporary considerations of the pairing symmetry in monolayer NbSe$_2$, and discuss approaches as to how this degree of mixing can be addressed quantitatively within our DFT framework. Our calculations also enable a quantitative description of the large anisotropy of the superconducting critical field, using DFT calculations of monolayer NbSe$_2$ in the normal state
Crystalline two-dimensional (2D) superconductors with low carrier density are an exciting new class of materials in which superconductivity coexists with strong interactions, the effects of complex topology are not obscured by disorder, and electroni c properties can be strongly tuned by electrostatic gating. Very recently, two such materials, magic-angle twisted bilayer graphene and monolayer $T_d$-WTe$_2$, have been reported to show superconductivity at temperatures near 1 K. Here we report superconductivity in semimetallic monolayer $T_d$-MoTe$_2$. The critical temperature $T_textrm{c}$ reaches 8 K, a sixty-fold enhancement as compared to the bulk. This anomalous increase in $T_textrm{c}$ is only observed in monolayers, and may be indicative of electronically mediated pairing. Reflecting the low carrier density, the critical temperature, magnetic field, and current density are all tunable by an applied gate voltage, revealing a superconducting dome that extends across both hole and electron pockets. The temperature dependence of the in-plane upper critical field is distinct from that of $2H$ transition metal dichalcogenides (TMDs), consistent with a tilted spin texture as predicted by textit{ab initio} theory.
Recent experiments reported gate-induced superconductivity in the monolayer 1T$$-WTe$_2$ which is a two-dimensional topological insulator in its normal state [1, 2]. The in-plane upper critical field $B_{c2}$ is found to exceed the conventional Pauli paramagnetic limit $B_p$ by 1-3 times. The enhancement cannot be explained by conventional spin-orbit coupling which vanishes due to inversion symmetry. In this work, we unveil some distinctive superconducting properties of centrosymmetric 1T$$-WTe$_2$ which arise from the coupling of spin, momentum and band parity degrees of freedom. As a result of this spin-orbit-parity coupling: (i) there is a first-order superconductor-metal transition at $B_{c2}$ much higher than the Pauli paramagnetic limit $B_p$, (ii) spin-susceptibility is anisotropic with respect to in-plane directions and results in anisotropic $B_{c2}$ and (iii) the $B_{c2}$ exhibits a strong gate dependence as the spin-orbit-parity coupling is significant only near the topological band crossing points. The importance of SOPC on the topologically nontrivial inter-orbital pairing phase is also discussed. Our theory generally applies to centrosymmetric materials with topological band
185 - P. Zhang , X.-L. Peng , T. Qian 2015
It is well known that superconductivity in Fe-based materials is favoured under tetragonal symmetry, whereas competing orders such as spin-density-wave (SDW) and nematic orders emerge or are reinforced upon breaking the fourfold (C4) symmetry. Accord ingly, suppression of orthorhombicity below the superconducting transition temperature (Tc) is found in underdoped compounds. Epitaxial film growth on selected substrates allows the design of crystal specific lattice distortions. Here we show that despite the breakdown of the C4 symmetry induced by a 5% difference in the lattice parameters, monolayers of FeSe grown by molecular beam epitaxy (MBE) on the (110) surface of SrTiO3 (STO) substrates [FeSe/STO(110)] exhibit a large nearly isotropic superconducting (SC) gap of 16 meV closing around 60 K. Our results on this new interfacial material, similar to those obtained previously on FeSe/STO(001), contradict the common belief that the C4 symmetry is essential for reaching high Tcs in Fe-based superconductors.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا