ﻻ يوجد ملخص باللغة العربية
We investigate the electronic structure of the epitaxial VO$_2$ films in the rutile phase using the density functional theory combined with the slave spin method (DFT+SS). In DFT-SS, the multiorbital Hubbard interactions are added to a DFT-fit tight-binding model, and we employ the slave-spin method to treat the electron correlation. We find that while stretching the system along the rutile $c$-axis results in a band structure favoring an anisotropic orbital fillings, the electron correlation favors an equal electron filling among $t_{2g}$ orbitals. These two distinct effects cooperatively induce interesting orbital-dependent redistributions of the electron occupations and the spectral weights, which pushes the strained VO$_2$ toward an orbital selective Mott transition (OSMT). The simulated single-particle spectral functions are directly compared to V L-edge resonant X-ray photoemission spectroscopy of epitaxial 10 nm VO$_2$/TiO$_2$ (001) and (100) strain orientations. Excellent agreement is observed between the simulations and experimental data regarding the strain-induced evolution of the lower Hubbard band. Simulations of rutile NbO$_2$ under similar strain conditions as VO$_2$ are performed, and we predict that OSMT will not occur in rutile NbO$_2$. Our results indicates that the electron correlation in VO$_2$ is important and can be modulated even in the rutile phase before the Peierls instability sets in.
Soft x-ray spectroscopy is used to investigate the strain dependence of the metal-insulator transition of VO2. Changes in the strength of the V 3d - O 2p hybridization are observed across the transition, and are linked to the structural distortion. F
Using density-functional theory calculations, we investigate the magnetic as well as the dynamical properties of tetragonal SrRuO3 (SRO) under the influence of epitaxial strain. It is found that both the tensile and compressive strain in the xy-plane
The structure, morphology, and electrical properties of epitaxial a-axis oriented thin films of Nd(0.2)Sr(0.8)MnO(3) are reported for thicknesses 10 nm <= t <= 150 nm. Films were grown with both tensile and compressive strain on various substrates. I
We have synthesized epitaxial NdNiO$_{3}$ ultra-thin films in a layer-by-layer growth mode under tensile and compressive strain on SrTiO$_{3}$ (001) and LaAlO$_3$ (001), respectively. A combination of X-ray diffraction, temperature dependent resistiv
We present an accurate implementation of total energy calculations into the local density approximation plus dynamical mean-field theory (LDA+DMFT) method. The electronic structure problem is solved through the full potential linear Muffin-Tin Orbita