ﻻ يوجد ملخص باللغة العربية
Using density-functional theory calculations, we investigate the magnetic as well as the dynamical properties of tetragonal SrRuO3 (SRO) under the influence of epitaxial strain. It is found that both the tensile and compressive strain in the xy-plane could induce the abrupt change in the magnetic moment of Ru atom. In particular, under the in-plane ~4% compressive strain, a ferromagnetic to nonmagnetic transition is induced. Whereas for the tensile strain larger than 3%, the Ru magnetic moment drops gradually with the increase of the strain, exhibiting a weak ferromagnetic state. We find that such magnetic transitions could be qualitatively explained by the Stoner model. In addition, frozen phonon calculations at {Gamma} point reveal structural instabilities could occur under both compressive and tensile strains. Such instabilities are very similar to those of the ferroelectric perovskite oxides, even though SRO remains to be metallic in the range we studied. These might have influence on the physical properties of oxide supercells taking SRO as constituent.
Thin films of the ferromagnetic metal SrRuO3 (SRO) show a varying easy magnetization axis depending on the epitaxial strain and undergo a metal-to-insulator transition with decreasing film thickness. We have investigated the magnetic properties of SR
We present evidence of strain-induced modulation of electron correlation effects and increased orbital anisotropy in the rutile phase of epitaxial VO$_2$/TiO$_2$ films from hard x-ray photoelectron spectroscopy and soft V L-edge x-ray absorption spec
Enhanced magnetic moment and coercivity in SrRuO3 thin films are significant issues for advanced technological usages and hence are researched extensively in recent times. Most of the previous reports on thin films with enhanced magnetic moment attri
Epitaxial thin films of SrRuO3 with large strain disorder were grown using pulsed laser deposition method which showed two distinct transition temperatures in Magnetic measurements. For the first time, we present visual evolution of magnetic domains
The quadruple Calcium manganite (CaMn7O12) is a multiferroic material that exhibits a giant magnetically-induced ferroelectric polarization which makes it very interesting for magnetoelectric applications. Here, we report the Raman spectroscopy study