ترغب بنشر مسار تعليمي؟ اضغط هنا

Spatially Resolved Galactic Wind in Lensed Galaxy RCSGA 032727-132609

78   0   0.0 ( 0 )
 نشر من قبل Rongmon Bordoloi
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We probe the spatial distribution of outflowing gas along four lines of sight separated by up to 6 kpc in a gravitationally-lensed star-forming galaxy at z=1.70. Using MgII and FeII emission and absorption as tracers, we find that the clumps of star formation are driving galactic outflows with velocities of -170 to -250 km/sec. The velocities of MgII emission are redshifted with respect to the systemic velocities of the galaxy, consistent with being back-scattered. By contrast, the FeII fluorescent emission lines are either slightly blueshifted or at the systemic velocity of the galaxy. Taken together, the velocity structure of the MgII and FeII emission is consistent with arising through scattering in galactic winds. Assuming a thin shell geometry for the out owing gas, the estimated masses carried out by these outfows are large (> 30 - 50 $rm{M_{odot} yr^{-1}}$), with mass loading factors several times the star-formation rate. Almost 20% to 50% of the blueshifted absorption probably escapes the gravitational potential of the galaxy. In this galaxy, the outflow is locally sourced, that is, the properties of the outflow in each line of sight are dominated by the properties of the nearest clump of star formation; the wind is not global to the galaxy. The mass outflow rates and the momentum flux carried out by outflows in individual star forming knots of this object are comparable to that of starburst galaxies in the local Universe.



قيم البحث

اقرأ أيضاً

We present a detailed analysis of multi-wavelength HST/WFC3 imaging and Keck/OSIRIS near-IR AO-assisted integral field spectroscopy for a highly magnified lensed galaxy at z=1.70. This young starburst is representative of UV-selected star-forming gal axies (SFG) at z~2 and contains multiple individual star-forming regions. Due to the lensing magnification, we can resolve spatial scales down to 100pc in the source plane of the galaxy. The velocity field shows disturbed kinematics suggestive of an ongoing interaction, and there is a clear signature of a tidal tail. We constrain the age, reddening, SFR and stellar mass of the star-forming clumps from SED modelling of the WFC3 photometry and measure their H-alpha luminosity, metallicity and outflow properties from the OSIRIS data. With strong star formation driven outflows in four clumps, RCSGA0327 is the first high redshift SFG at stellar mass <10^10 M_sun with spatially resolved stellar winds. We compare the H-alpha luminosities, sizes and dispersions of the star-forming regions to other high-z clumps as well as local giant HII regions and find no evidence for increased clump star formation surface densities in interacting systems, unlike in the local Universe. Spatially resolved SED modelling unveils an established stellar population at the location of the largest clump and a second mass concentration near the edge of the system which is not detected in H-alpha emission. This suggests a picture of an equal-mass mixed major merger, which has not triggered a new burst of star formation or caused a tidal tail in the gas-poor component.
The most distant galaxies known are at z~10-11, observed 400-500 Myr after the Big Bang. The few z~10-11 candidates discovered to date have been exceptionally small- barely resolved, if at all, by the Hubble Space Telescope. Here we present the disco very of SPT0615-JD, a fortuitous z~10 (z_phot=9.9+/-0.6) galaxy candidate stretched into an arc over ~2.5 by the effects of strong gravitational lensing. Discovered in the Reionization Lensing Cluster Survey (RELICS) Hubble Treasury program and companion S-RELICS Spitzer program, this candidate has a lensed H-band magnitude of 25.7+/-0.1 AB mag. With a magnification of mu~4-7 estimated from our lens models, the de-lensed intrinsic magnitude is 27.6+/-0.3 AB mag, and the half-light radius is r_e<0.8 kpc, both consistent with other z>9 candidates. The inferred stellar mass (log [M* /M_Sun]=9.7^{+0.7}_{-0.5}) and star formation rate (log [SFR/M_Sun yr^{-1}]=1.3^{+0.2}_{-0.3}) indicate that this candidate is a typical star-forming galaxy on the z>6 SFR-M* relation. We note that three independent lens models predict two counterimages, at least one of which should be of a similar magnitude to the arc, but these counterimages are not yet detected. Counterimages would not be expected if the arc were at lower redshift. However, the only spectral energy distributions capable of fitting the Hubble and Spitzer photometry well at lower redshifts require unphysical combinations of z~2 galaxy properties. The unprecedented lensed size of this z~10 candidate offers the potential for the James Webb Space Telescope to study the geometric and kinematic properties of a galaxy observed 500 Myr after the Big Bang.
We present a multi-wavelength integral field spectroscopic study of the low-z LIRG IRAS F11506-3851, on the basis of VIMOS and SINFONI (ESO-VLT) observations. The morphology and the 2D kinematics of the gaseous (neutral and ionized) and stellar compo nents have been mapped using the NaD doublet, the H$alpha$ line, and the near-IR CO(2-0) and CO(3-1) bands. The kinematics of the ionized gas and the stars are dominated by rotation, with large observed velocity amplitudes and centrally peaked velocity dispersion maps. The stars lag behind the warm gas and represent a dynamically hotter system, as indicated by the observed dynamical ratios. Thanks to these IFS data we have disentangled the contribution of the stars and the ISM to the NaD feature, finding that it is dominated by the absorption of neutral gas clouds in the ISM. The neutral gas 2D kinematics shows a complex structure dominated by two components. On the one hand, the thick slowly rotating disk lags significantly compared to the ionized gas and the stars, with an irregular and off-center velocity dispersion map. On the other hand, a kpc-scale neutral gas outflow is observed along the semi-minor axis of the galaxy, as revealed by large blueshifted velocities (30-154 km/s). We derive an outflowing mass rate in neutral gas of about 48 $dot{M_{rm w}}$/yr. Although this implies a global mass loading factor of 1.4, the 2D distribution of the ongoing SF suggests a much larger value of mass loading factor associated with the inner regions (R$<$200 pc), where the current SF represents only 3 percent of the total. All together these results strongly suggest that we are witnessing (nuclear) quenching due to SF feedback in IRAS F11506-3851. However, the relatively large mass of molecular gas detected in the nuclear region via the H2 1-0 S(1) line suggests that further episodes of SF may take place again.
The total specific angular momentum j of a galaxy disk is matched with that of its dark matter halo, but the distributions are different, in that there is a lack of both low- and high-j baryons with respect to the CDM predictions. I illustrate how th e probability density function PDF(j/j_mean) can inform us of a galaxys morphology and evolutionary history with a spanning set of examples from present-day galaxies and a galaxy at z~1.5. The shape of PDF(j/j_mean) is correlated with photometric morphology, with disk-dominated galaxies having more symmetric PDF(j/j_mean) and bulge-dominated galaxies having a strongly-skewed PDF(j/j_mean). Galaxies with bigger bulges have more strongly-tailed PDF(j/j_mean), but disks of all sizes have a similar PDF(j/j_mean). In future, PDF(j/j_mean) will be useful as a kinematic decomposition tool.
116 - Brenda L. Frye 2012
We take advantage of gravitational lensing amplification by Abell 1689 (z=0.187) to undertake the first space-based census of emission line galaxies (ELGs) in the field of a massive lensing cluster. Forty-three ELGs are identified to a flux of i_775= 27.3 via slitless grism spectroscopy. One ELG (at z=0.7895) is very bright owing to lensing magnification by a factor of ~4.5. Several Balmer emission lines detected from ground-based follow-up spectroscopy signal the onset of a major starburst for this low-mass galaxy (M_* = 2 x 10^9 solar masses) with a high specific star formation rate (~20 /Gyr). From the blue emission lines we measure a gas-phase oxygen abundance consistent with solar (12+log(O/H)=8.8 +/- 0.2). We break the continuous line-emitting region of this giant arc into seven ~1kpc bins (intrinsic size) and measure a variety of metallicity dependent line ratios. A weak trend of increasing metal fraction is seen toward the dynamical center of the galaxy. Interestingly, the metal line ratios in a region offset from the center by ~1kpc have a placement on the blue HII region excitation diagram with f([OIII])/f(Hbeta) and f([NeIII])/f(Hbeta) that can be fit by an AGN. This asymmetrical AGN-like behavior is interpreted as a product of shocks in the direction of the galaxys extended tail, possibly instigated by a recent galaxy interaction.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا