ترغب بنشر مسار تعليمي؟ اضغط هنا

The SAMI Galaxy Survey: Spatially Resolved Metallicity and Ionization Mapping

92   0   0.0 ( 0 )
 نشر من قبل Henry Poetrodjojo
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present gas-phase metallicity and ionization parameter maps of 25 star-forming face-on spiral galaxies from the SAMI Galaxy Survey Data Release 1. Self-consistent metallicity and ionization parameter maps are calculated simultaneously through an iterative process to account for the interdependence of the strong emission line diagnostics involving ([OII]+[OIII])/H$beta$ (R23) and [OIII]/[OII] (O32). The maps are created on a spaxel-by-spaxel basis because HII regions are not resolved at the SAMI spatial resolution. We combine the SAMI data with stellar mass, star formation rate (SFR), effective radius (R$_e$), ellipticity, and position angles (PA) from the GAMA survey to analyze their relation to the metallicity and ionization parameter. We find a weak trend of steepening metallicity gradient with galaxy stellar mass, with values ranging from -0.03 to -0.20 dex/R$_e$. Only two galaxies show radial gradients in ionization parameter. We find that the ionization parameter has no significant correlation with either SFR, sSFR (specific star formation rate), or metallicity. For several individual galaxies we find structure in the ionization parameter maps suggestive of spiral arm features. We find a typical ionization parameter range of $7.0 < log(q) < 7.8$ for our galaxy sample with no significant overall structure. An ionization parameter range of this magnitude is large enough to caution the use of metallicity diagnostics which have not considered the effects of a varying ionization parameter distribution.



قيم البحث

اقرأ أيضاً

We present a detailed exploration of the stellar mass vs. gas-phase metallicity relation (MZR) using integral field spectroscopy data obtained from ~1000 galaxies observed by the SAMI Galaxy survey. These spatially resolved spectroscopic data allow u s to determine the metallicity within the same physical scale (Reff) for different calibrators. The shape of the MZ relations is very similar between the different calibrators, while there are large offsets in the absolute values of the abundances. We confirm our previous results derived using the spatially resolved data provided by the CALIFA and MaNGA surveys: (1) we do not find any significant secondary relation of the MZR with either the star formation rate (SFR) nor the specific SFR (SFR/Mass) for any of the calibrators used in this study, based on the analysis of the {individual} residuals, (2) if there is a dependence with the SFR, it is weaker than the reported one ($r_csim -$0.3), it is confined to the low mass regime (M*<10$^9$Msun) or high SFR regimes, and it does not produce any significant improvement in the {description of the average population of galaxies. The aparent disagreement with published results based on single fiber spectroscopic data could be due to (i) the interpretation of the secondary relation itself, (ii) the lower number of objects sampled at the low mass regime by the current study, or (iii) the presence of extreme star-forming galaxies that drive the secondary relation in previous results
We present the ~800 star formation rate maps for the SAMI Galaxy Survey based on H{alpha} emission maps, corrected for dust attenuation via the Balmer decrement, that are included in the SAMI Public Data Release 1. We mask out spaxels contaminated by non-stellar emission using the [O III]/H{beta}, [N II]/H{alpha}, [S II]/H{alpha}, and [O I]/H{alpha} line ratios. Using these maps, we examine the global and resolved star-forming main sequences of SAMI galaxies as a function of morphology, environmental density, and stellar mass. Galaxies further below the star-forming main sequence are more likely to have flatter star formation profiles. Early-type galaxies split into two populations with similar stellar masses and central stellar mass surface densities. The main sequence population has centrally-concentrated star formation similar to late-type galaxies, while galaxies >3{sigma} below the main sequence show significantly reduced star formation most strikingly in the nuclear regions. The split populations support a two-step quenching mechanism, wherein halo mass first cuts off the gas supply and remaining gas continues to form stars until the local stellar mass surface density can stabilize the reduced remaining fuel against further star formation. Across all morphologies, galaxies in denser environments show a decreased specific star formation rate from the outside in, supporting an environmental cause for quenching, such as ram-pressure stripping or galaxy interactions.
We present the Early Data Release of the Sydney-AAO Multi-object Integral field spectrograph (SAMI) Galaxy Survey. The SAMI Galaxy Survey is an ongoing integral field spectroscopic survey of ~3400 low-redshift (z<0.12) galaxies, covering galaxies in the field and in groups within the Galaxy And Mass Assembly (GAMA) survey regions, and a sample of galaxies in clusters. In the Early Data Release, we publicly release the fully calibrated datacubes for a representative selection of 107 galaxies drawn from the GAMA regions, along with information about these galaxies from the GAMA catalogues. All datacubes for the Early Data Release galaxies can be downloaded individually or as a set from the SAMI Galaxy Survey website. In this paper we also assess the quality of the pipeline used to reduce the SAMI data, giving metrics that quantify its performance at all stages in processing the raw data into calibrated datacubes. The pipeline gives excellent results throughout, with typical sky subtraction residuals in the continuum of 0.9-1.2 per cent, a relative flux calibration uncertainty of 4.1 per cent (systematic) plus 4.3 per cent (statistical), and atmospheric dispersion removed with an accuracy of 0.09, less than a fifth of a spaxel.
The Sydney-AAO Multi-object Integral field spectrograph (SAMI) Galaxy Survey is an ongoing project to obtain integral field spectroscopic observations of ~3400 galaxies by mid-2016. Including the pilot survey, a total of ~1000 galaxies have been obse rved to date, making the SAMI Galaxy Survey the largest of its kind in existence. This unique dataset allows a wide range of investigations into different aspects of galaxy evolution. The first public data from the SAMI Galaxy Survey, consisting of 107 galaxies drawn from the full sample, has now been released. By giving early access to SAMI data for the entire research community, we aim to stimulate research across a broad range of topics in galaxy evolution. As the sample continues to grow, the survey will open up a new and unique parameter space for galaxy evolution studies.
We have entered a new era where integral-field spectroscopic surveys of galaxies are sufficiently large to adequately sample large-scale structure over a cosmologically significant volume. This was the primary design goal of the SAMI Galaxy Survey. H ere, in Data Release 3 (DR3), we release data for the full sample of 3068 unique galaxies observed. This includes the SAMI cluster sample of 888 unique galaxies for the first time. For each galaxy, there are two primary spectral cubes covering the blue (370-570nm) and red (630-740nm) optical wavelength ranges at spectral resolving power of R=1808 and 4304 respectively. For each primary cube, we also provide three spatially binned spectral cubes and a set of standardized aperture spectra. For each galaxy, we include complete 2D maps from parameterized fitting to the emission-line and absorption-line spectral data. These maps provide information on the gas ionization and kinematics, stellar kinematics and populations, and more. All data are available online through Australian Astronomical Optics (AAO) Data Central.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا