ترغب بنشر مسار تعليمي؟ اضغط هنا

Vanishing k-space fidelity and phase diagrams bulk-edge-bulk correspondence

125   0   0.0 ( 0 )
 نشر من قبل Pedro Sacramento
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The fidelity between two infinitesimally close states or the fidelity susceptibility of a system are known to detect quantum phase transitions. Here we show that the k-space fidelity between two states far from each other and taken deep inside (bulk) of two phase s, generically vanishes at the k-points where there are gapless points in the energy spectrum that give origin to the lines (edges) separating the phases in the phase diagram. We consider a general case of two-band models and present a sufficient condition for the existence of gapless points, given there are pairs of parameter points for which the fidelity between the corresponding states is zero. By presenting an explicit counter-example, we showed that the sufficient condition is not necessary. Further, we showed that, unless the set of parameter points is suitably constrained, the existence of gapless points generically imply the accompanied pairs of parameter points with vanishing fidelity. Also, we showed the connection between the vanishing fidelity and gapless points on a number of concrete examples (topological triplet superconductor, topological insulator, 1d Kitaev model of spinless fermions, BCS superconductor, Ising model in a transverse field, graphene and Haldane Chern insulator), as well as for the more general case of Dirac-like Hamiltonians. We also briefly discuss the relation between the vanishing fidelity and gapless points at finite temperatures.

قيم البحث

اقرأ أيضاً

We outline a theory of symmetry protected topological phases of one-dimensional quantum walks. We assume spectral gaps around the symmetry-distinguished points +1 and -1, in which only discrete eigenvalues are allowed. The phase classification by int eger or binary indices extends the classification known for translation invariant systems in terms of their band structure. However, our theory requires no translation invariance whatsoever, and the indices we define in this general setting are invariant under arbitrary symmetric local perturbations, even those that cannot be continuously contracted to the identity. More precisely we define two indices for every walk, characterizing the behavior far to the right and far to the left, respectively. Their sum is a lower bound on the number of eigenstates at +1 and -1. For a translation invariant system the indices add up to zero, so one of them already characterizes the phase. By joining two bulk phases with different indices we get a walk in which the right and left indices no longer cancel, so the theory predicts bound states at +1 or -1. This is a rigorous statement of bulk-edge correspondence. The results also apply to the Hamiltonian case with a single gap at zero.
179 - Shun Tamura , Shintaro Hoshino , 2021
The bulk-boundary correspondence in one dimension asserts that the physical quantities defined in the bulk and at the edge are connected, as well established in the argument for electric polarization. Recently, a spectral bulk-boundary correspondence (SBBC), an extended version of the conventional bulk-boundary correspondence to energy-dependent spectral functions, such as Greens functions, has been proposed in chiral symmetric systems, in which the chiral operator anticommutes with the Hamiltonian. In this study, we extend the SBBC to a system with impurity scattering and dynamical self-energies, regardless of the presence or absence of a gap in the energy spectrum. Moreover, the SBBC is observed to hold even in a system without chiral symmetry, which substantially generalizes its concept. The SBBC is demonstrated with concrete models, such as superconducting nanowires and a normal metallic chain. Its potential applications and certain remaining issues are also discussed.
The bulk-edge correspondence (BEC) refers to a one-to-one relation between the bulk and edge properties ubiquitous in topologically nontrivial systems. Depending on the setup, BEC manifests in different forms and govern the spectral and transport pro perties of topological insulators and semimetals. Although the topological pump is theoretically old, BEC in the pump has been established just recently [1] motivated by the state-of-the-art experiments using cold atoms [2,3]. The center of mass (CM) of a system with boundaries shows a sequence of quantized jumps in the adiabatic limit associated with the edge states. Although the bulk is adiabatic, the edge is inevitably non-adiabatic in the experimental setup or in any numerical simulations. Still the pumped charge is quantized and carried by the bulk. Its quantization is guaranteed by a compensation between the bulk and edges. We show that in the presence of disorder the pumped charge continues to be quantized despite the appearance of non-quantized jumps.
Li and Haldane conjectured and numerically substantiated that the entanglement spectrum of the reduced density matrix of ground-states of time-reversal breaking topological phases (fractional quantum Hall states) contains information about the counti ng of their edge modes when the ground-state is cut in two spatially distinct regions and one of the regions is traced out. We analytically substantiate this conjecture for a series of FQH states defined as unique zero modes of pseudopotential Hamiltonians by finding a one to one map between the thermodynamic limit counting of two different entanglement spectra: the particle entanglement spectrum, whose counting of eigenvalues for each good quantum number is identical (up to accidental degeneracies) to the counting of bulk quasiholes, and the orbital entanglement spectrum (the Li-Haldane spectrum). As the particle entanglement spectrum is related to bulk quasihole physics and the orbital entanglement spectrum is related to edge physics, our map can be thought of as a mathematically sound microscopic description of bulk-edge correspondence in entanglement spectra. By using a set of clustering operators which have their origin in conformal field theory (CFT) operator expansions, we show that the counting of the orbital entanglement spectrum eigenvalues in the thermodynamic limit must be identical to the counting of quasiholes in the bulk. The latter equals the counting of edge modes at a hard-wall boundary placed on the sample. Moreover, we show this to be true even for CFT states which are likely bulk gapless, such as the Gaffnian wavefunction.
We study effectively one-dimensional systems that emerge at the edge of a two-dimensional topologically ordered state, or at the boundary between two topologically ordered states. We argue that anyons of the bulk are associated with emergent symmetri es of the edge, which play a crucial role in the structure of its phase diagram. Using this symmetry principle, transitions between distinct gapped phases at the boundaries of Abelian states can be understood in terms of symmetry breaking transitions or transitions between symmetry protected topological phases. Yet more exotic phenomena occur when the bulk hosts non-Abelian anyons. To demonstrate these principles, we explore the phase diagrams of the edges of a single and a double layer of the toric code, as well as those of domain walls in a single and double-layer Kitaev spin liquid (KSL). In the case of the KSL, we find that the presence of a non-Abelian anyon in the bulk enforces Kramers-Wannier self-duality as a symmetry of the effective boundary theory. These examples illustrate a number of surprising phenomena, such as spontaneous duality-breaking, two-sector phase transitions, and unfreezing of marginal operators at a transition between different gapless phases.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا