ﻻ يوجد ملخص باللغة العربية
The bulk-boundary correspondence in one dimension asserts that the physical quantities defined in the bulk and at the edge are connected, as well established in the argument for electric polarization. Recently, a spectral bulk-boundary correspondence (SBBC), an extended version of the conventional bulk-boundary correspondence to energy-dependent spectral functions, such as Greens functions, has been proposed in chiral symmetric systems, in which the chiral operator anticommutes with the Hamiltonian. In this study, we extend the SBBC to a system with impurity scattering and dynamical self-energies, regardless of the presence or absence of a gap in the energy spectrum. Moreover, the SBBC is observed to hold even in a system without chiral symmetry, which substantially generalizes its concept. The SBBC is demonstrated with concrete models, such as superconducting nanowires and a normal metallic chain. Its potential applications and certain remaining issues are also discussed.
Two-dimensional second-order topological superconductors host zero-dimensional Majorana bound states at their boundaries. In this work, focusing on rotation-invariant crystalline topological superconductors, we establish a bulk-boundary correspondenc
Bulk-boundary correspondence, a central principle in topological matter relating bulk topological invariants to edge states, breaks down in a generic class of non-Hermitian systems that have so far eluded experimental effort. Here we theoretically pr
Triple nodal points are degeneracies of energy bands in momentum space at which three Hamiltonian eigenstates coalesce at a single eigenenergy. For spinless particles, the stability of a triple nodal point requires two ingredients: rotation symmetry
The study of the laws of nature has traditionally been pursued in the limit of isolated systems, where energy is conserved. This is not always a valid approximation, however, as the inclusion of features like gain and loss, or periodic driving, quali
The bulk-boundary correspondence is a generic feature of topological states of matter, reflecting the intrinsic relation between topological bulk and boundary states. For example, robust edge states propagate along the edges and corner states gather