ﻻ يوجد ملخص باللغة العربية
We present a novel method to jointly learn a 3D face parametric model and 3D face reconstruction from diverse sources. Previous methods usually learn 3D face modeling from one kind of source, such as scanned data or in-the-wild images. Although 3D scanned data contain accurate geometric information of face shapes, the capture system is expensive and such datasets usually contain a small number of subjects. On the other hand, in-the-wild face images are easily obtained and there are a large number of facial images. However, facial images do not contain explicit geometric information. In this paper, we propose a method to learn a unified face model from diverse sources. Besides scanned face data and face images, we also utilize a large number of RGB-D images captured with an iPhone X to bridge the gap between the two sources. Experimental results demonstrate that with training data from more sources, we can learn a more powerful face model.
Non-parametric face modeling aims to reconstruct 3D face only from images without shape assumptions. While plausible facial details are predicted, the models tend to over-depend on local color appearance and suffer from ambiguous noise. To address su
Face recognition is one of the most studied research topics in the community. In recent years, the research on face recognition has shifted to using 3D facial surfaces, as more discriminating features can be represented by the 3D geometric informatio
3D face reconstruction and face alignment are two fundamental and highly related topics in computer vision. Recently, some works start to use deep learning models to estimate the 3DMM coefficients to reconstruct 3D face geometry. However, the perform
Recently, many methods have been proposed for face reconstruction from multiple images, most of which involve fundamental principles of Shape from Shading and Structure from motion. However, a majority of the methods just generate discrete surface mo
We present a learning-based technique for estimating high dynamic range (HDR), omnidirectional illumination from a single low dynamic range (LDR) portrait image captured under arbitrary indoor or outdoor lighting conditions. We train our model using