ترغب بنشر مسار تعليمي؟ اضغط هنا

3D Face Recognition: A Survey

394   0   0.0 ( 0 )
 نشر من قبل Xuequan Lu
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Face recognition is one of the most studied research topics in the community. In recent years, the research on face recognition has shifted to using 3D facial surfaces, as more discriminating features can be represented by the 3D geometric information. This survey focuses on reviewing the 3D face recognition techniques developed in the past ten years which are generally categorized into conventional methods and deep learning methods. The categorized techniques are evaluated using detailed descriptions of the representative works. The advantages and disadvantages of the techniques are summarized in terms of accuracy, complexity and robustness to face variation (expression, pose and occlusions, etc). The main contribution of this survey is that it comprehensively covers both conventional methods and deep learning methods on 3D face recognition. In addition, a review of available 3D face databases is provided, along with the discussion of future research challenges and directions.



قيم البحث

اقرأ أيضاً

We present a novel method to jointly learn a 3D face parametric model and 3D face reconstruction from diverse sources. Previous methods usually learn 3D face modeling from one kind of source, such as scanned data or in-the-wild images. Although 3D sc anned data contain accurate geometric information of face shapes, the capture system is expensive and such datasets usually contain a small number of subjects. On the other hand, in-the-wild face images are easily obtained and there are a large number of facial images. However, facial images do not contain explicit geometric information. In this paper, we propose a method to learn a unified face model from diverse sources. Besides scanned face data and face images, we also utilize a large number of RGB-D images captured with an iPhone X to bridge the gap between the two sources. Experimental results demonstrate that with training data from more sources, we can learn a more powerful face model.
Heterogeneous face recognition (HFR) refers to matching face imagery across different domains. It has received much interest from the research community as a result of its profound implications in law enforcement. A wide variety of new invariant feat ures, cross-modality matching models and heterogeneous datasets being established in recent years. This survey provides a comprehensive review of established techniques and recent developments in HFR. Moreover, we offer a detailed account of datasets and benchmarks commonly used for evaluation. We finish by assessing the state of the field and discussing promising directions for future research.
Many recent works have reconstructed distinctive 3D face shapes by aggregating shape parameters of the same identity and separating those of different people based on parametric models (e.g., 3D morphable models (3DMMs)). However, despite the high ac curacy in the face recognition task using these shape parameters, the visual discrimination of face shapes reconstructed from those parameters is unsatisfactory. The following research question has not been answered in previous works: Do discriminative shape parameters guarantee visual discrimination in represented 3D face shapes? This paper analyzes the relationship between shape parameters and reconstructed shape geometry and proposes a novel shape identity-aware regularization(SIR) loss for shape parameters, aiming at increasing discriminability in both the shape parameter and shape geometry domains. Moreover, to cope with the lack of training data containing both landmark and identity annotations, we propose a network structure and an associated training strategy to leverage mixed data containing either identity or landmark labels. We compare our method with existing methods in terms of the reconstruction error, visual distinguishability, and face recognition accuracy of the shape parameters. Experimental results show that our method outperforms the state-of-the-art methods.
Face identification/recognition has significantly advanced over the past years. However, most of the proposed approaches rely on static RGB frames and on neutral facial expressions. This has two disadvantages. First, important facial shape cues are i gnored. Second, facial deformations due to expressions can have an impact on the performance of such a method. In this paper, we propose a novel framework for dynamic 3D face identification/recognition based on facial keypoints. Each dynamic sequence of facial expressions is represented as a spatio-temporal graph, which is constructed using 3D facial landmarks. Each graph node contains local shape and texture features that are extracted from its neighborhood. For the classification/identification of faces, a Spatio-temporal Graph Convolutional Network (ST-GCN) is used. Finally, we evaluate our approach on a challenging dynamic 3D facial expression dataset.
In this paper, we provide a detailed survey of 3D Morphable Face Models over the 20 years since they were first proposed. The challenges in building and applying these models, namely capture, modeling, image formation, and image analysis, are still a ctive research topics, and we review the state-of-the-art in each of these areas. We also look ahead, identifying unsolved challenges, proposing directions for future research and highlighting the broad range of current and future applications.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا