ترغب بنشر مسار تعليمي؟ اضغط هنا

MT-VAE: Learning Motion Transformations to Generate Multimodal Human Dynamics

64   0   0.0 ( 0 )
 نشر من قبل Xinchen Yan
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Long-term human motion can be represented as a series of motion modes---motion sequences that capture short-term temporal dynamics---with transitions between them. We leverage this structure and present a novel Motion Transformation Variational Auto-Encoders (MT-VAE) for learning motion sequence generation. Our model jointly learns a feature embedding for motion modes (that the motion sequence can be reconstructed from) and a feature transformation that represents the transition of one motion mode to the next motion mode. Our model is able to generate multiple diverse and plausible motion sequences in the future from the same input. We apply our approach to both facial and full body motion, and demonstrate applications like analogy-based motion transfer and video synthesis.



قيم البحث

اقرأ أيضاً

We train a network to generate mappings between training sets and classification policies (a classifier generator) by conditioning on the entire training set via an attentional mechanism. The network is directly optimized for test set performance on an training set of related tasks, which is then transferred to unseen test tasks. We use this to optimize for performance in the low-data and unsupervised learning regimes, and obtain significantly better performance in the 10-50 datapoint regime than support vector classifiers, random forests, XGBoost, and k-nearest neighbors on a range of small datasets.
We investigate the problem of learning to generate complex networks from data. Specifically, we consider whether deep belief networks, dependency networks, and members of the exponential random graph family can learn to generate networks whose comple x behavior is consistent with a set of input examples. We find that the deep model is able to capture the complex behavior of small networks, but that no model is able capture this behavior for networks with more than a handful of nodes.
Learning socially-aware motion representations is at the core of recent advances in multi-agent problems, such as human motion forecasting and robot navigation in crowds. Despite promising progress, existing representations learned with neural networ ks still struggle to generalize in closed-loop predictions (e.g., output colliding trajectories). This issue largely arises from the non-i.i.d. nature of sequential prediction in conjunction with ill-distributed training data. Intuitively, if the training data only comes from human behaviors in safe spaces, i.e., from positive examples, it is difficult for learning algorithms to capture the notion of negative examples like collisions. In this work, we aim to address this issue by explicitly modeling negative examples through self-supervision: (i) we introduce a social contrastive loss that regularizes the extracted motion representation by discerning the ground-truth positive events from synthetic negative ones; (ii) we construct informative negative samples based on our prior knowledge of rare but dangerous circumstances. Our method substantially reduces the collision rates of recent trajectory forecasting, behavioral cloning and reinforcement learning algorithms, outperforming state-of-the-art methods on several benchmarks. Our code is available at https://github.com/vita-epfl/social-nce.
Social media such as Instagram and Twitter have become important platforms for marketing and selling illicit drugs. Detection of online illicit drug trafficking has become critical to combat the online trade of illicit drugs. However, the legal statu s often varies spatially and temporally; even for the same drug, federal and state legislation can have different regulations about its legality. Meanwhile, more drug trafficking events are disguised as a novel form of advertising commenting leading to information heterogeneity. Accordingly, accurate detection of illicit drug trafficking events (IDTEs) from social media has become even more challenging. In this work, we conduct the first systematic study on fine-grained detection of IDTEs on Instagram. We propose to take a deep multimodal multilabel learning (DMML) approach to detect IDTEs and demonstrate its effectiveness on a newly constructed dataset called multimodal IDTE(MM-IDTE). Specifically, our model takes text and image data as the input and combines multimodal information to predict multiple labels of illicit drugs. Inspired by the success of BERT, we have developed a self-supervised multimodal bidirectional transformer by jointly fine-tuning pretrained text and image encoders. We have constructed a large-scale dataset MM-IDTE with manually annotated multiple drug labels to support fine-grained detection of illicit drugs. Extensive experimental results on the MM-IDTE dataset show that the proposed DMML methodology can accurately detect IDTEs even in the presence of special characters and style changes attempting to evade detection.
In the field of reproductive health, a vital aspect for the detection of male fertility issues is the analysis of human semen quality. Two factors of importance are the morphology and motility of the sperm cells. While the former describes defects in different parts of a spermatozoon, the latter measures the efficient movement of cells. For many non-human species, so-called Computer-Aided Sperm Analysis systems work well for assessing these characteristics from microscopic video recordings but struggle with human sperm samples which generally show higher degrees of debris and dead spermatozoa, as well as lower overall sperm motility. Here, machine learning methods that harness large amounts of training data to extract salient features could support physicians with the detection of fertility issues or in vitro fertilisation procedures. In this work, the overall motility of given sperm samples is predicted with the help of a machine learning framework integrating unsupervised methods for feature extraction with downstream regression models. The models evaluated herein improve on the state-of-the-art for video-based sperm-motility prediction.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا