ترغب بنشر مسار تعليمي؟ اضغط هنا

Detection of Illicit Drug Trafficking Events on Instagram: A Deep Multimodal Multilabel Learning Approach

90   0   0.0 ( 0 )
 نشر من قبل Chuanbo Hu
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Social media such as Instagram and Twitter have become important platforms for marketing and selling illicit drugs. Detection of online illicit drug trafficking has become critical to combat the online trade of illicit drugs. However, the legal status often varies spatially and temporally; even for the same drug, federal and state legislation can have different regulations about its legality. Meanwhile, more drug trafficking events are disguised as a novel form of advertising commenting leading to information heterogeneity. Accordingly, accurate detection of illicit drug trafficking events (IDTEs) from social media has become even more challenging. In this work, we conduct the first systematic study on fine-grained detection of IDTEs on Instagram. We propose to take a deep multimodal multilabel learning (DMML) approach to detect IDTEs and demonstrate its effectiveness on a newly constructed dataset called multimodal IDTE(MM-IDTE). Specifically, our model takes text and image data as the input and combines multimodal information to predict multiple labels of illicit drugs. Inspired by the success of BERT, we have developed a self-supervised multimodal bidirectional transformer by jointly fine-tuning pretrained text and image encoders. We have constructed a large-scale dataset MM-IDTE with manually annotated multiple drug labels to support fine-grained detection of illicit drugs. Extensive experimental results on the MM-IDTE dataset show that the proposed DMML methodology can accurately detect IDTEs even in the presence of special characters and style changes attempting to evade detection.



قيم البحث

اقرأ أيضاً

Illicit drug trafficking via social media sites such as Instagram has become a severe problem, thus drawing a great deal of attention from law enforcement and public health agencies. How to identify illicit drug dealers from social media data has rem ained a technical challenge due to the following reasons. On the one hand, the available data are limited because of privacy concerns with crawling social media sites; on the other hand, the diversity of drug dealing patterns makes it difficult to reliably distinguish drug dealers from common drug users. Unlike existing methods that focus on posting-based detection, we propose to tackle the problem of illicit drug dealer identification by constructing a large-scale multimodal dataset named Identifying Drug Dealers on Instagram (IDDIG). Totally nearly 4,000 user accounts, of which over 1,400 are drug dealers, have been collected from Instagram with multiple data sources including post comments, post images, homepage bio, and homepage images. We then design a quadruple-based multimodal fusion method to combine the multiple data sources associated with each user account for drug dealer identification. Experimental results on the constructed IDDIG dataset demonstrate the effectiveness of the proposed method in identifying drug dealers (almost 95% accuracy). Moreover, we have developed a hashtag-based community detection technique for discovering evolving patterns, especially those related to geography and drug types.
164 - M.A. Ganaie 2021
Ensemble learning combines several individual models to obtain better generalization performance. Currently, deep learning models with multilayer processing architecture is showing better performance as compared to the shallow or traditional classifi cation models. Deep ensemble learning models combine the advantages of both the deep learning models as well as the ensemble learning such that the final model has better generalization performance. This paper reviews the state-of-art deep ensemble models and hence serves as an extensive summary for the researchers. The ensemble models are broadly categorised into ensemble models like bagging, boosting and stacking, negative correlation based deep ensemble models, explicit/implicit ensembles, homogeneous /heterogeneous ensemble, decision fusion strategies, unsupervised, semi-supervised, reinforcement learning and online/incremental, multilabel based deep ensemble models. Application of deep ensemble models in different domains is also briefly discussed. Finally, we conclude this paper with some future recommendations and research directions.
For robots to coexist with humans in a social world like ours, it is crucial that they possess human-like social interaction skills. Programming a robot to possess such skills is a challenging task. In this paper, we propose a Multimodal Deep Q-Netwo rk (MDQN) to enable a robot to learn human-like interaction skills through a trial and error method. This paper aims to develop a robot that gathers data during its interaction with a human and learns human interaction behaviour from the high-dimensional sensory information using end-to-end reinforcement learning. This paper demonstrates that the robot was able to learn basic interaction skills successfully, after 14 days of interacting with people.
136 - Junghoon Seo , Joon Suk Huh 2020
Partial label learning (PLL) is a class of weakly supervised learning where each training instance consists of a data and a set of candidate labels containing a unique ground truth label. To tackle this problem, a majority of current state-of-the-art methods employs either label disambiguation or averaging strategies. So far, PLL methods without such techniques have been considered impractical. In this paper, we challenge this view by revealing the hidden power of the oldest and naivest PLL method when it is instantiated with deep neural networks. Specifically, we show that, with deep neural networks, the naive model can achieve competitive performances against the other state-of-the-art methods, suggesting it as a strong baseline for PLL. We also address the question of how and why such a naive model works well with deep neural networks. Our empirical results indicate that deep neural networks trained on partially labeled examples generalize very well even in the over-parametrized regime and without label disambiguations or regularizations. We point out that existing learning theories on PLL are vacuous in the over-parametrized regime. Hence they cannot explain why the deep naive method works. We propose an alternative theory on how deep learning generalize in PLL problems.
Deep Learning (DL) is vulnerable to out-of-distribution and adversarial examples resulting in incorrect outputs. To make DL more robust, several posthoc (or runtime) anomaly detection techniques to detect (and discard) these anomalous samples have be en proposed in the recent past. This survey tries to provide a structured and comprehensive overview of the research on anomaly detection for DL based applications. We provide a taxonomy for existing techniques based on their underlying assumptions and adopted approaches. We discuss various techniques in each of the categories and provide the relative strengths and weaknesses of the approaches. Our goal in this survey is to provide an easier yet better understanding of the techniques belonging to different categories in which research has been done on this topic. Finally, we highlight the unsolved research challenges while applying anomaly detection techniques in DL systems and present some high-impact future research directions.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا