ﻻ يوجد ملخص باللغة العربية
To investigate the interlayer interaction in the recently synthesized high-entropy-alloy-type (HEA-type) REO0.5F0.5BiS2 superconductors (RE: rare earth), we have systematically synthesized samples with close lattice parameters and different mixing entropy (DSmix) for the RE site. The crystal structure was investigated using synchrotron X-ray diffraction and Rietveld refinement. For the examined samples with different DSmix, the increase in DSmix does not largely affect the bond lengths and the bond angle of the BiS2 conducting layer but clearly suppresses the in-plane disorder at the in-plane S1 site, which is the parameter essential for the emergence of bulk superconductivity in the REO0.5F0.5BiS2 system. Bulk nature of superconductivity is enhanced by the increase in DSmix for the present samples. The results of this work clearly show that the increase in mixing entropy at the blocking layer can positively affect the emergence of bulk superconductivity in the conducting layer, which is the evidence of the interaction between the high entropy states of the blocking layers and the physical properties of the conducting layers.
REBa2Cu3O7-d (RE123, RE: rare earth) is one of the high-temperature superconductors with a transition temperature (Tc) exceeding 90 K. Because of its high Tc and large critical current density (Jc) under magnetic fields, RE123 superconductors have be
Pressure effects on a recently discovered BiS2-based superconductor Bi2(O,F)S2 (Tc = 5.1 K) were examined via two different methods; high pressure resistivity measurement and high pressure annealing. The effects of these two methods on the supercondu
The effects of pressure on the superconducting properties of a Bi-based layered superconductor La2O2Bi3Ag0.6Sn0.4S6, which possesses a four-layer-type conducting layer, have been studied through the electrical resistance and magnetic susceptibility m
We investigate the superconducting properties and possible nematic superconductivity of self-doped BiCh2-based (Ch: S, Se) superconductor CeOBiS1.7Se0.3 through the measurements of in-plane anisotropy of magnetoresistance. Single crystals of CeOBiS1.
A high-entropy-alloy-type (HEA-type) superconductor is new category of highly disordered superconductors. Therefore, finding brand-new superconducting characteristics in the HEA-type superconductors would open new avenue to investigate the relationsh