ﻻ يوجد ملخص باللغة العربية
We present an interdigitated capacitor trimming technique for fine-tuning the resonance frequency of superconducting microresonators and increasing the multiplexing factor. We first measure the optical response of the array with a beam mapping system to link all resonances to their physical resonators. Then a new set of resonance frequencies with uniform spacing and higher multiplexing factor is designed. We use simulations to deduce the lengths that we should trim from the capacitor fingers in order to shift the resonances to the desired frequencies. The sample is then modified using contact lithography and re-measured using the same setup. We demonstrate this technique on a 112-pixel aluminum lumped-element kinetic-inductance detector array. Before trimming, the resonance frequency deviation of this array is investigated. The variation of the inductor width plays the main role for the deviation. After trimming, the mean fractional frequency error for identified resonators is -6.4e-4, with a standard deviation of 1.8e-4. The final optical yield is increased from 70.5% to 96.7% with no observable crosstalk beyond -15 dB during mapping. This technique could be applied to other photon-sensitive superconducting microresonator arrays for increasing the yield and multiplexing factor.
For space observatories, the glitches caused by high energy phonons created by the interaction of cosmic ray particles with the detector substrate lead to dead time during observation. Mitigating the impact of cosmic rays is therefore an important re
Heat management and refrigeration are key concepts for nanoscale devices operating at cryogenic temperatures. The design of an on-chip mesoscopic refrigerator that works thanks to the input heat is presented, thus realizing a solid state implementati
A noiseless, photon counting detector, which resolves the energy of each photon, could radically change astronomy, biophysics and quantum optics. Superconducting detectors promise an intrinsic resolving power at visible wavelengths of $R=E/delta Eapp
We experimentally demonstrate the principle of an on-chip submillimeter wave filter bank spectrometer, using superconducting microresonators as narrow band-separation filters. The filters are made of NbTiN/SiNx/NbTiN microstrip line resonators, which
Superconducting resonators used in millimeter-submillimeter astronomy would greatly benefit from deposited dielectrics with a small dielectric loss. We deposited hydrogenated amorphous silicon films using plasma-enhanced chemical vapor deposition, at