ﻻ يوجد ملخص باللغة العربية
For space observatories, the glitches caused by high energy phonons created by the interaction of cosmic ray particles with the detector substrate lead to dead time during observation. Mitigating the impact of cosmic rays is therefore an important requirement for detectors to be used in future space missions. In order to investigate possible solutions, we carry out a systematic study by testing four large arrays of Microwave Kinetic Inductance Detectors (MKIDs), each consisting of $sim$960 pixels and fabricated on monolithic 55 mm $times$ 55 mm $times$ 0.35 mm Si substrates. We compare the response to cosmic ray interactions in our laboratory for different detector arrays: A standard array with only the MKID array as reference; an array with a low $T_c$ superconducting film as phonon absorber on the opposite side of the substrate; and arrays with MKIDs on membranes. The idea is that the low $T_c$ layer down-converts the phonon energy to values below the pair breaking threshold of the MKIDs, and the membranes isolate the sensitive part of the MKIDs from phonons created in the substrate. We find that the dead time can be reduced up to a factor of 40 when compared to the reference array. Simulations show that the dead time can be reduced to below 1 % for the tested detector arrays when operated in a spacecraft in an L2 or a similar far-Earth orbit. The technique described here is also applicable and important for large superconducting qubit arrays for future quantum computers.
Microwave Kinetic Inductance Detectors (MKIDs) have great potential for large very sensitive detector arrays for use in, for example, sub-mm imaging. Being intrinsically readout in the frequency domain, they are particularly suited for frequency doma
Kinetic Inductance Detectors (KIDs) are superconductive low$-$temperature detectors useful for astrophysics and particle physics. We have developed arrays of lumped elements KIDs (LEKIDs) sensitive to microwave photons, optimized for the four horn-co
We present an analysis of the optical response of lumped-element kinetic-inductance detector arrays, based on the NIKA2 1mm array. This array has a dual-polarization sensitive Hilbert inductor for directly absorbing incident photons. We present the o
We present a technique for increasing the internal quality factor of kinetic inductance detectors (KIDs) by nulling ambient magnetic fields with a properly applied magnetic field. The KIDs used in this study are made from thin-film aluminum, they are
The Stratospheric Kinetic Inductance Polarimeter (SKIP) is a proposed balloon-borne experiment designed to study the cosmic microwave background, the cosmic infrared background and Galactic dust emission by observing 1133 square degrees of sky in the