ﻻ يوجد ملخص باللغة العربية
We experimentally demonstrate the principle of an on-chip submillimeter wave filter bank spectrometer, using superconducting microresonators as narrow band-separation filters. The filters are made of NbTiN/SiNx/NbTiN microstrip line resonators, which have a resonance frequency in the range of 614-685 GHz---two orders of magnitude higher in frequency than what is currently studied for use in circuit quantum electrodynamics and photodetectors. The frequency resolution of the filters decreases from 350 to 140 with increasing frequency, most likely limited by dissipation of the resonators.
SuperSpec is an ultra-compact spectrometer-on-a-chip for millimeter and submillimeter wavelength astronomy. Its very small size, wide spectral bandwidth, and highly multiplexed readout will enable construction of powerful multibeam spectrometers for
An integrated filterbank (IFB) in combination with microwave kinetic inductance detectors (MKIDs), both based on superconducting resonators, could be used to make broadband submillimeter imaging spectrographs that are compact and flexible. In order t
We present a method to measure the absolute surface resistance of conductive samples at a set of GHz frequencies with superconducting lead stripline resonators at temperatures 1- 6K. The stripline structure can easily be applied for bulk samples and
We present an interdigitated capacitor trimming technique for fine-tuning the resonance frequency of superconducting microresonators and increasing the multiplexing factor. We first measure the optical response of the array with a beam mapping system
Superconducting resonators used in millimeter-submillimeter astronomy would greatly benefit from deposited dielectrics with a small dielectric loss. We deposited hydrogenated amorphous silicon films using plasma-enhanced chemical vapor deposition, at