ترغب بنشر مسار تعليمي؟ اضغط هنا

Novel scenario for production of heavy flavored mesons in heavy ion collisions

106   0   0.0 ( 0 )
 نشر من قبل Boris Kopeliovich
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The observed strong suppression of heavy flavored hadrons produced with high $p_T$, is caused by final state interactions with the created dense medium. Vacuum radiation of high-pT heavy quarks ceases at a short time scale, as is confirmed by pQCD calculations and by LEP measurements of the fragmentation functions of heavy quarks. Production of a heavy flavored hadrons in a dense medium is considerably delayed due to prompt breakup of the hadrons by the medium. This causes a strong suppression of the heavy quark yield because of the specific shape of the fragmentation function. The parameter-free description is in a good accord with available data.



قيم البحث

اقرأ أيضاً

A study of the horn in the particle ratio $K^+/pi^+$ for central heavy-ion collisions as a function of the collision energy $sqrt{s}$ is presented. We analyse two different interpretations: the onset of deconfinement and the transition from a baryon- to a meson-dominated hadron gas. We use a realistic equation of state (EOS), which includes both hadron and quark degrees-of-freedom. The Taub-adiabate procedure is followed to determine the system at the early stage. Our results do not support an explanation of the horn as due to the onset of deconfinement. Using only hadronic EOS we reproduced the energy dependence of the $K^+/pi^+$ and $Lambda/pi^-$ ratios employing an experimental parametrisation of the freeze-out curve. We observe a transition between a baryon- and a meson-dominated regime; however, the reproduction of the $K^+/pi^+$ and $Lambda/pi^-$ ratios as a function of $sqrt{s}$ is not completely satisfying. We finally propose a new idea for the interpretation of the data, the roll-over scheme, in which the scalar meson field $sigma$ has not reached the thermal equilibrium at freeze-out. The rool-over scheme for the equilibration of the $sigma$-field is based on the inflation mechanism. The non-equilibrium evolution of the scalar field influences the particle production, e.g. $K^+/pi^+$, however, the fixing of the free parameters in this model is still an open issue.
Hadronization of heavy quarks reveals various unusual features. Gluon radiation by a heavy quark originated from a hard process, ceases shortly on a distance of the order of few fm. Due to the dead-cone effect a heavy quark radiates only a small frac tion of its energy. This is why the measured fragmentation function D(z) peaks at large z. Hadronization finishes at very short distances, well shorter than 1 fm, by production of a colorless small-size Qq-bar dipole. This ensures dominance of a perturbative mechanism and makes possible factorization of short and long distances. The latter corresponds to final state interactions of the produced dipole propagating through a dense medium. The results provide good description of data on beauty and charm suppression in heavy ion collisions, fixing the transport coefficient for b-quarks about twice smaller than for charm, and both significantly lower that the values determined from data on suppression of high-pT light hadrons. We relate this to reduction of the QCD coupling at higher scales, and suppression of radiation by the dead-cone effect.
Heavy ion collisions provide a unique opportunity to study the nature of X(3872) compared with electron-positron and proton-proton (antiproton) collisions. With the abundant charm pairs produced in heavy-ion collisions, the production of multicharm h adrons and molecules can be enhanced by the combination of charm and anticharm quarks in the medium. We investigate the centrality and momentum dependence of X(3872) in heavy-ion collisions via the Langevin equation and instant coalescence model (LICM). When X(3872) is treated as a compact tetraquark state, the tetraquarks are produced via the coalescence of heavy and light quarks near the quantum chromodynamic (QCD) phase transition due to the restoration of the heavy quark potential at $Trightarrow T_c$. In the molecular scenario, loosely bound X(3872) is produced via the coalescence of $D^0$-$bar D^{*0}$ mesons in a hadronic medium after kinetic freeze-out. The phase space distributions of the charm quarks and D mesons in a bulk medium are studied with the Langevin equation, while the coalescence probability between constituent particles is controlled by the Wigner function, which encodes the internal structure of the formed particle. First, we employ the LICM to explain both $D^0$ and $J/psi$ production as a benchmark. Then, we give predictions regarding X(3872) production. We find that the total yield of tetraquark is several times larger than the molecular production in Pb-Pb collisions. Although the geometric size of the molecule is huge, the coalescence probability is small due to strict constraints on the relative momentum between $D^0$ and $bar D^{*0}$ in the molecular Wigner function, which significantly suppresses the molecular yield.
Studies of fully-reconstructed jets in heavy-ion collisions aim at extracting thermodynamical and transport properties of hot and dense QCD matter. Recently, a plethora of new jet substructure observables have been theoretically and experimentally de veloped that provide novel precise insights on the modifications of the parton radiation pattern induced by a QCD medium. This report, summarizing the main lines of discussion at the 5th Heavy Ion Jet Workshop and CERN TH institute Novel tools and observables for jet physics in heavy-ion collisions in 2017, presents a first attempt at outlining a strategy for isolating and identifying the relevant physical processes that are responsible for the observed medium-induced jet modifications. These studies combine theory insights, based on the Lund parton splitting map, with sophisticated jet reconstruction techniques, including grooming and background subtraction algorithms.
61 - C. Greiner 2001
We elaborate on our recent suggestion on antihyperon production in relativistic heavy ion collisions by means of multi-mesonic (fusion-type) reactions. It will be shown that the (rare) antihyperons are driven towards chemical equilibrium with pions, nucleons and kaons on a timescale of 1--3 fm/c in a still moderately baryon-dense hadronic environment.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا