ترغب بنشر مسار تعليمي؟ اضغط هنا

Effect of Angular Momentum Alignment and Strong Magnetic Fields on the Formation of Protostellar Disks

226   0   0.0 ( 0 )
 نشر من قبل William Gray
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Star forming molecular clouds are observed to be both highly magnetized and turbulent. Consequently the formation of protostellar disks is largely dependent on the complex interaction between gravity, magnetic fields, and turbulence. Studies of non-turbulent protostellar disk formation with realistic magnetic fields have shown that these fields are efficient in removing angular momentum from the forming disks, preventing their formation. However, once turbulence is included, disks can form in even highly magnetized clouds, although the precise mechanism remains uncertain. Here we present several high resolution simulations of turbulent, realistically magnetized, high-mass molecular clouds with both aligned and random turbulence to study the role that turbulence, misalignment, and magnetic fields have on the formation of protostellar disks. We find that when the turbulence is artificially aligned so that the angular momentum is parallel to the initial uniform field, no rotationally supported disks are formed, regardless of the initial turbulent energy. We conclude that turbulence and the associated misalignment between the angular momentum and the magnetic field are crucial in the formation of protostellar disks in the presence of realistic magnetic fields.



قيم البحث

اقرأ أيضاً

We present a large suite of simulations of the formation of low-mass star clusters. Our simulations include an extensive set of physical processes -- magnetohydrodynamics, radiative transfer, and protostellar outflows -- and span a wide range of viri al parameters and magnetic field strengths. Comparing the outcomes of our simulations to observations, we find that simulations remaining close to virial balance throughout their history produce star formation efficiencies and initial mass function (IMF) peaks that are stable in time and in reasonable agreement with observations. Our results indicate that small-scale dissipation effects near the protostellar surface provide a feedback loop for stabilizing the star formation efficiency. This is true regardless of whether the balance is maintained by input of energy from large scale forcing or by strong magnetic fields that inhibit collapse. In contrast, simulations that leave virial balance and undergo runaway collapse form stars too efficiently and produce an IMF that becomes increasingly top-heavy with time. In all cases we find that the competition between magnetic flux advection toward the protostar and outward advection due to magnetic interchange instabilities, and the competition between turbulent amplification and reconnection close to newly-formed protostars renders the local magnetic field structure insensitive to the strength of the large-scale field, ensuring that radiation is always more important than magnetic support in setting the fragmentation scale and thus the IMF peak mass. The statistics of multiple stellar systems are similarly insensitive to variations in the initial conditions and generally agree with observations within the range of statistical uncertainty.
The angular momentum of galactic discs in semi-analytic models of galaxy formation is usually updated in time as material is accreted to the disc by adopting a constant dimensionless spin parameter and little attention is paid to the effects of accre tion with misaligned angular momenta. These effects are the subject of this paper, where we adopt a Monte-Carlo simulation for the changes in the direction of the angular momentum of a galaxy disc as it accretes matter based on accurate measurements from dark-matter haloes in the Millennium II simulation. In our semi-analytic model implementation, the flips seen the dark matter haloes are assumed to be the same for the cold baryons; however, we also assume that in the latter the flip also entails a difficulty for the disc to increase its angular momentum which causes the disc to become smaller relative to a no-flip case. This makes star formation to occur faster, specially in low mass galaxies at all redshifts allowing galaxies to reach higher stellar masses faster. We adopt a new condition for the triggering of starbursts during mergers. As these produce the largest flips it is natural to adopt the disc instability criterion to evaluate the triggering of bursts in mergers instead of one based on mass ratios as in the original model. The new implementation reduces the average lifetimes of discs by a factor of 2, while still allowing old ages for the present-day discs of large spiral galaxies. It also provides a faster decline of star formation in massive galaxies and a better fit to the bright end of the luminosity function at z = 0.
176 - James Wurster , Zhi-Yun Li 2018
Truncated abstract: The formation of a protostellar disc is a natural outcome during the star formation process. As gas in a molecular cloud core collapses under self-gravity, the angular momentum of the gas will slow its collapse on small scales and promote the formation of a protostellar disc. Although the angular momenta of dense star-forming cores remain to be fully characterized observationally, existing data indicates that typical cores have enough angular momenta to form relatively large, rotationally supported discs. However, molecular clouds are observed to be permeated by magnetic fields, which can strongly affect the evolution of angular momentum through magnetic braking. Indeed, in the ideal MHD limit, magnetic braking has been shown to be so efficient as to remove essentially all of the angular momentum of the material close to the forming star such that disc formation is suppressed. This is known as the magnetic braking catastrophe. The catastrophe must be averted in order for the all-important rotationally supported discs to appear, but when and how this happens remains debated. We review the resolutions proposed to date, with emphasis on misalignment, turbulence and especially non-ideal effects. The dissipative non-ideal effects weaken the magnetic field, and the dispersive term redirects it to promote or hinder disc formation. When self-consistently applying non-ideal processes, rotationally supported discs of at least tens of au form, thus preventing the magnetic braking catastrophe. The non-ideal processes are sensitive to the magnetic field strength, cosmic ray ionization rate, and gas and dust grain properties, thus a complete understanding of the host molecular cloud is required. Therefore, the properties of the host molecular cloud -- and especially its magnetic field -- cannot be ignored when numerically modelling the formation and evolution of protostellar discs.
We show that the stellar specific angular momentum j_*, mass M_*, and bulge fraction beta_* of normal galaxies of all morphological types are consistent with a simple model based on a linear superposition of independent disks and bulges. In this mode l, disks and bulges follow scaling relations of the form j_*d ~ M_*d^alpha and j_*b ~ M_*b^alpha with alpha = 0.67 +/- 0.07 but offset from each other by a factor of 8 +/- 2 over the mass range 8.9 <= log M_*/M_Sun <= 11.8. Separate fits for disks and bulges alone give alpha = 0.58 +/- 0.10 and alpha = 0.83 +/- 0.16, respectively. This model correctly predicts that galaxies follow a curved 2D surface in the 3D space of log j_*, log M_*, and beta_*. We find no statistically significant indication that galaxies with classical and pseudo bulges follow different relations in this space, although some differences are permitted within the observed scatter and the inherent uncertainties in decomposing galaxies into disks and bulges. As a byproduct of this analysis, we show that the j_*--M_* scaling relations for disk-dominated galaxies from several previous studies are in excellent agreement with each other. In addition, we resolve some conflicting claims about the beta_*-dependence of the j_*--M_* scaling relations. The results presented here reinforce and extend our earlier suggestion that the distribution of galaxies with different beta_* in the j_*--M_* diagram constitutes an objective, physically motivated alternative to subjective classification schemes such as the Hubble sequence.
Using numerical hydrodynamics simulations we studied the gravitational collapse of pre-stellar cores of sub-solar mass embedded into a low-density external environment. Four models with different magnitude and direction of rotation of the external en vironment with respect to the central core were studied and compared with an isolated model. We found that the infall of matter from the external environment can significantly alter the disk properties as compared to those seen in the isolated model. Depending on the magnitude and direction of rotation of the external environment, a variety of disks can form including compact (<= 200 AU) ones shrinking in size due to infall of external matter with low angular momentum, as well as extended disks forming due to infall of external matter with high angular momentum. The former are usually stable against gravitational fragmentation, while the latter are prone to fragmentation and formation of stellar systems with sub-stellar/very-low-mass companions. In the case of counterrotating external environment, very compact (< 5 AU) and short-lived (<= a few * 10^5 yr) disks can form when infalling material has low angular momentum. The most interesting case is found for the infall of counterrotating external material with high angular momentum, leading to the formation of counterrotating inner and outer disks separated by a deep gap at a few tens AU. The gap migrates inward due to accretion of the inner disk onto the protostar, turns into a central hole, and finally disappears giving way to the outer strongly gravitationally unstable disk. This model may lead to the emergence of a transient stellar system with sub-stellar/very-low-mass components counterrotating with respect to that of the star.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا