ﻻ يوجد ملخص باللغة العربية
The Symmetries of Feynman Integrals (SFI) is a method for evaluating Feynman Integrals which exposes a novel continuous group associated with the diagram which depends only on its topology and acts on its parameters. Using this method we study the kite diagram, a two-loop diagram with two external legs, with arbitrary masses and spacetime dimension. Generically, this method reduces a Feynman integral into a line integral over simpler diagrams. We identify a locus in parameter space where the integral further reduces to a mere linear combination of simpler diagrams, thereby maximally generalizing the known massless case.
The Symmetries of Feynman Integrals method (SFI) associates a natural Lie group with any diagram, depending only on its topology. The group acts on parameter space and the method determines the integrals dependence within group orbits. This paper ana
We study the most general triangle diagram through the Symmetries of Feynman Integrals (SFI) approach. The SFI equation system is obtained and presented in a simple basis. The system is solved providing a novel derivation of an essentially known expr
The Symmetries of Feynman Integrals (SFI) method is extended for the first time to incorporate an irreducible numerator. This is done in the context of the so-called vacuum and propagator seagull diagrams, which have 3 and 2 loops, respectively, and
We initiate the study of cluster algebras in Feynman integrals in dimensional regularization. We provide evidence that four-point Feynman integrals with one off-shell leg are described by a $C_{2}$ cluster algebra, and we find cluster adjacency relat
We elucidate the vector space (twisted relative cohomology) that is Poincare dual to the vector space of Feynman integrals (twisted cohomology) in general spacetime dimension. The pairing between these spaces - an algebraic invariant called the inter