ﻻ يوجد ملخص باللغة العربية
The Symmetries of Feynman Integrals method (SFI) associates a natural Lie group with any diagram, depending only on its topology. The group acts on parameter space and the method determines the integrals dependence within group orbits. This paper analyzes the two-loop vacuum diagram. It is shown how the solution of the SFI equations practically reproduces the most general value of the integral. On the way certain novel derivations are found, a geometrical interpretation is described, and divergences in general dimension are analyzed. These would hopefully be useful for engaging with more involved diagrams.
The Symmetries of Feynman Integrals (SFI) is a method for evaluating Feynman Integrals which exposes a novel continuous group associated with the diagram which depends only on its topology and acts on its parameters. Using this method we study the ki
We study the most general triangle diagram through the Symmetries of Feynman Integrals (SFI) approach. The SFI equation system is obtained and presented in a simple basis. The system is solved providing a novel derivation of an essentially known expr
The Symmetries of Feynman Integrals (SFI) method is extended for the first time to incorporate an irreducible numerator. This is done in the context of the so-called vacuum and propagator seagull diagrams, which have 3 and 2 loops, respectively, and
We study cluster algebras for some all-loop Feynman integrals, including box-ladder, penta-box-ladder, and (seven-point) double-penta-ladder integrals. In addition to the well-known box ladder whose symbol alphabet is $D_2simeq A_1^2$, we show that p
In this manuscript, which is to appear in the proceedings of the conference MathemAmplitude 2019 in Padova, Italy, we provide an overview of the module intersection method for the the integration-by-parts (IBP) reduction of multi-loop Feynman integra