ترغب بنشر مسار تعليمي؟ اضغط هنا

Generating VaR scenarios with product beta distributions

95   0   0.0 ( 0 )
 نشر من قبل Dietmar Pfeifer Prof. Dr.
 تاريخ النشر 2018
  مجال البحث مالية
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose a Monte Carlo simulation method to generate stress tests by VaR scenarios under Solvency II for dependent risks on the basis of observed data. This is of particular interest for the construction of Internal Models and requirements on evaluation processes formulated in the Commission Delegated Regulation. The approach is based on former work on partition-ofunity copulas, however with a direct scenario estimation of the joint density by product beta distributions after a suitable transformation of the original data.



قيم البحث

اقرأ أيضاً

The central idea of the paper is to present a general simple patchwork construction principle for multivariate copulas that create unfavourable VaR (i.e. Value at Risk) scenarios while maintaining given marginal distributions. This is of particular i nterest for the construction of Internal Models in the insurance industry under Solvency II in the European Union. The method is exemplified with a 19-dimensional real-life data set of insurance losses.
In this paper, we investigate the optimal management of defined contribution (abbr. DC) pension plan under relative performance ratio and Value-at-Risk (abbr. VaR) constraint. Inflation risk is introduced in this paper and the financial market consis ts of cash, inflation-indexed zero coupon bond and a stock. The goal of the pension manager is to maximize the performance ratio of the real terminal wealth under VaR constraint. An auxiliary process is introduced to transform the original problem into a self-financing problem first. Combining linearization method, Lagrange dual method, martingale method and concavification method, we obtain the optimal terminal wealth under different cases. For convex penalty function, there are fourteen cases while for concave penalty function, there are six cases. Besides, when the penalty function and reward function are both power functions, the explicit forms of the optimal investment strategies are obtained. Numerical examples are shown in the end of this paper to illustrate the impacts of the performance ratio and VaR constraint.
In this paper we propose a novel Bayesian methodology for Value-at-Risk computation based on parametric Product Partition Models. Value-at-Risk is a standard tool to measure and control the market risk of an asset or a portfolio, and it is also requi red for regulatory purposes. Its popularity is partly due to the fact that it is an easily understood measure of risk. The use of Product Partition Models allows us to remain in a Normal setting even in presence of outlying points, and to obtain a closed-form expression for Value-at-Risk computation. We present and compare two different scenarios: a product partition structure on the vector of means and a product partition structure on the vector of variances. We apply our methodology to an Italian stock market data set from Mib30. The numerical results clearly show that Product Partition Models can be successfully exploited in order to quantify market risk exposure. The obtained Value-at-Risk estimates are in full agreement with Maximum Likelihood approaches, but our methodology provides richer information about the clustering structure of the data and the presence of outlying points.
In this paper we propose a multivariate quantile regression framework to forecast Value at Risk (VaR) and Expected Shortfall (ES) of multiple financial assets simultaneously, extending Taylor (2019). We generalize the Multivariate Asymmetric Laplace (MAL) joint quantile regression of Petrella and Raponi (2019) to a time-varying setting, which allows us to specify a dynamic process for the evolution of both VaR and ES of each asset. The proposed methodology accounts for the dependence structure among asset returns. By exploiting the properties of the MAL distribution, we then propose a new portfolio optimization method that minimizes the portfolio risk and controls for well-known characteristics of financial data. We evaluate the advantages of the proposed approach on both simulated and real data, using weekly returns on three major stock market indices. We show that our method outperforms other existing models and provides more accurate risk measure forecasts compared to univariate ones.
A justification of the Basel liquidity formula for risk capital in the trading book is given under the assumption that market risk-factor changes form a Gaussian white noise process over 10-day time steps and changes to P&L are linear in the risk-fac tor changes. A generalization of the formula is derived under the more general assumption that risk-factor changes are multivariate elliptical. It is shown that the Basel formula tends to be conservative when the elliptical distributions are from the heavier-tailed generalized hyperbolic family. As a by-product of the analysis a Fourier approach to calculating expected shortfall for general symmetric loss distributions is developed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا