ﻻ يوجد ملخص باللغة العربية
In this paper we propose a novel Bayesian methodology for Value-at-Risk computation based on parametric Product Partition Models. Value-at-Risk is a standard tool to measure and control the market risk of an asset or a portfolio, and it is also required for regulatory purposes. Its popularity is partly due to the fact that it is an easily understood measure of risk. The use of Product Partition Models allows us to remain in a Normal setting even in presence of outlying points, and to obtain a closed-form expression for Value-at-Risk computation. We present and compare two different scenarios: a product partition structure on the vector of means and a product partition structure on the vector of variances. We apply our methodology to an Italian stock market data set from Mib30. The numerical results clearly show that Product Partition Models can be successfully exploited in order to quantify market risk exposure. The obtained Value-at-Risk estimates are in full agreement with Maximum Likelihood approaches, but our methodology provides richer information about the clustering structure of the data and the presence of outlying points.
A new risk measure, the lambda value at risk (Lambda VaR), has been recently proposed from a theoretical point of view as a generalization of the value at risk (VaR). The Lambda VaR appears attractive for its potential ability to solve several proble
In economics, insurance and finance, value at risk (VaR) is a widely used measure of the risk of loss on a specific portfolio of financial assets. For a given portfolio, time horizon, and probability $alpha$, the $100alpha%$ VaR is defined as a thres
We propose a generalization of the classical notion of the $V@R_{lambda}$ that takes into account not only the probability of the losses, but the balance between such probability and the amount of the loss. This is obtained by defining a new class of
Several well-established benchmark predictors exist for Value-at-Risk (VaR), a major instrument for financial risk management. Hybrid methods combining AR-GARCH filtering with skewed-$t$ residuals and the extreme value theory-based approach are parti
We derive bounds on the distribution function, therefore also on the Value-at-Risk, of $varphi(mathbf X)$ where $varphi$ is an aggregation function and $mathbf X = (X_1,dots,X_d)$ is a random vector with known marginal distributions and partially kno