ترغب بنشر مسار تعليمي؟ اضغط هنا

On the geometric stability of an inorganic nanowire and an organic ligand shell

63   0   0.0 ( 0 )
 نشر من قبل Simon Bettscheider
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The break-up of a nanowire with an organic ligand shell into discrete droplets is analysed in terms of the Rayleigh-Plateau instability. Explicit account is taken of the effect of the organic ligand shell upon the energetics and kinetics of surface diffusion in the wire. Both an initial perturbation analysis and a full numerical analysis of the evolution in wire morphology are conducted, and the governing non-dimensional groups are identified. The perturbation analysis is remarkably accurate in obtaining the main features of the instability, including the pinch-off time and the resulting diameter of the droplets. It is conjectured that the surface energy of the wire and surrounding organic shell depends upon both the mean and deviatoric invariants of the curvature tensor. Such a behaviour allows for the possibility of a stable nanowire such that the Rayleigh-Plateau instability is not energetically favourable. A stability map illustrates this. Maps are also constructed for the final droplet size and pinch-off time as a function of two non-dimensional groups that characterise the energetics and kinetics of diffusion in the presence of the organic shell. These maps can guide future experimental activity on the stabilisation of nanowires by organic ligand shells.

قيم البحث

اقرأ أيضاً

Porphyrinic materials show a range of interesting and useful optical and electrical properties. The less well-known sub-class of porphyrin diacids has been used in this work to construct an ionic hybrid organic-inorganic material in combination with a halogenidometalate anion. The resulting compound, $[H_6TPyP][BiCl_6]_2$ (1) (TPyP = tetra(4-pyridyl)porphyrin) has been obtained via a facile solution based synthesis in single crystalline form. The material exhibits a broad photoluminescence emission band between 650 and 850 nm at room temperature. Single crystals of $[H_6TPyP][BiCl_6]_2$ show a photocurrent in the fA and a much higher dark current in the nA range. They also display an unexpected reversible color change upon wetting with different liquids. This phenomenon has been investigated with optical spectroscopy, SEM, XPS and NEXAFS techniques, showing that a surface-based structural coloration effect is the source of the color change. This stands in contrast to other materials where structural coloration typically has to be introduced through elaborate, multi-step processes or the use of natural templates. Additionally, it underscores the potential of self-assembly of porphyrinic hybrid compounds in the fabrication of materials with unusual optical properties.
We report ferrielectricity in a single-phase crystal, TSCC -- tris-sarcosine calcium chloride [(CH3NHCH2COOH)3CaCl2]. Ferrielectricity is well known in smectic liquid crystals but almost unknown in true crystalline solids. Pulvari reported it in 1960 in mixtures of ferroelectrics and antiferroelectrics, but only at high fields. TSCC exhibits a second-order displacive phase transition near Tc = 130 K that can be lowered to a Quantum Critical Point at zero Kelvin via Br- or I-substitution, and phases predicted to be antiferroelectric at high pressure and low temperatures. Unusually, the size of the primitive unit cell does not increase. We measure hysteresis loops and polarization below T = 64 K and clear Raman evidence for this transition, as well of another transition near 47-50 K. X-ray and neutron studies below Tc = 130K show there is an antiferroelectric displacement out of plane of two sarcosine groups; but these are antiparallel displacements are of different magnitude, leading to a bias voltage that grows with decreasing T. A monoclinic subgroup C2 may be possible at the lowest temperatures (T<64K or T<48K), but no direct evidence exists for a crystal class lower than orthorhombic.
One-dimensional inorganic nanotubes hold promise for technological applications due to their distinct physical/chemical properties, but so far advancements have been hampered by difficulties in producing single-wall nanotubes with a well-defined radi us. In this work we investigate, based on Density Functional Theory (DFT), the formation mechanism of 135 different inorganic nanotubes formed by the intrinsic self-rolling driving force found in asymmetric 2D Janus sheets. We show that for isovalent Janus sheets, the lattice mismatch between inner and outer atomic layers is the driving force behind the nanotube formation, while in the non-isovalent case it is governed by the difference in chemical bond strength of the inner and outer layer leading to steric effects. From our pool of candidate structures we have identified more than 100 tubes with a preferred radius below 35 {AA}, which we hypothesize can display unique properties compared to their parent 2D monolayers. Simple descriptors have been identified to accelerate the discovery of small-radius tubes and a Bayesian regression approach has been implemented to assess the uncertainty in our predictions on the radius.
A stable core-shell structure with Ih symmetry, Au12@Au30, has been investigated by first-principles calculations. It is composed of an icosahedron core and an icosidodecahedron shell. The stability of the core-shell Au42 structure is verified by vib rational frequency analysis and molecular dynamics NVT simulations. Both the frontier molecular orbitals and the spin density of states show obvious s-d hybridization characteristics. The adaptive natural density partitioning analysis demonstrate multi-center bonds, twenty 6-center {sigma} bonds ,and one 12-center {sigma} bond, which are of great importance for the core-shell structural stability. In this core-shell nanostructure, there are also a large number of one-center valence lone electron pairs with the characteristics of d-like orbitals, so that the proposed Au12@Au30 could be used in medicine and catalysis fields.
Perovskite solar cells have shown remarkable efficiencies beyond 22%, through organic and inorganic cation alloying. However, the role of alkali-metal cations is not well-understood. By using synchrotron-based nano-X-ray fluorescence and complementar y measurements, we show that when adding RbI and/or CsI the halide distribution becomes homogenous. This homogenization translates into long-lived charge carrier decays, spatially homogenous carrier dynamics visualized by ultrafast microscopy, as well as improved photovoltaic device performance. We find that Rb and K phase-segregate in highly concentrated aggregates. Synchrotron-based X-ray-beam-induced current and electron-beam-induced current of solar cells show that Rb clusters do not contribute to the current and are recombination active. Our findings bring light to the beneficial effects of alkali metal halides in perovskites, and point at areas of weakness in the elemental composition of these complex perovskites, paving the way to improved performance in this rapidly growing family of materials for solar cell applications.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا