ترغب بنشر مسار تعليمي؟ اضغط هنا

Color Change Effect in an Organic-Inorganic Hybrid Material Based on a Porphyrin Diacid

78   0   0.0 ( 0 )
 نشر من قبل Johanna Heine
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Porphyrinic materials show a range of interesting and useful optical and electrical properties. The less well-known sub-class of porphyrin diacids has been used in this work to construct an ionic hybrid organic-inorganic material in combination with a halogenidometalate anion. The resulting compound, $[H_6TPyP][BiCl_6]_2$ (1) (TPyP = tetra(4-pyridyl)porphyrin) has been obtained via a facile solution based synthesis in single crystalline form. The material exhibits a broad photoluminescence emission band between 650 and 850 nm at room temperature. Single crystals of $[H_6TPyP][BiCl_6]_2$ show a photocurrent in the fA and a much higher dark current in the nA range. They also display an unexpected reversible color change upon wetting with different liquids. This phenomenon has been investigated with optical spectroscopy, SEM, XPS and NEXAFS techniques, showing that a surface-based structural coloration effect is the source of the color change. This stands in contrast to other materials where structural coloration typically has to be introduced through elaborate, multi-step processes or the use of natural templates. Additionally, it underscores the potential of self-assembly of porphyrinic hybrid compounds in the fabrication of materials with unusual optical properties.

قيم البحث

اقرأ أيضاً

Despite the imperative importance in solar-cell efficiency, the intriguing phenomena at the interface between perovskite solar-cell and adjacent carrier transfer layers are hardly uncovered. Here we show that PbI$_2$/AI-terminated lead-iodide-perovsk ite (APbI$_3$; A=Cs$^+$/ methylammonium(MA)) interfaced with the charge transport medium of graphene or TiO2 exhibits the sizable/robust Rashba-Dresselhaus (RD) effect using density-functional-theory and ab initio molecular dynamics (AIMD) simulations above cubic-phase temperature. At the PbI$_2$-terminated graphene/CsPbI3(001) interface, ferroelectric distortion towards graphene facilitates an inversion breaking field. At the MAI-terminated TiO$_2$/MAPbI$_3$(001) interface, the enrooted alignment of MA$^+$ towards TiO$_2$ by short-strong hydrogen-bonding and the concomitant PbI$_3$ distortion preserve the RD interactions even above 330 K. The robust RD effect at the interface even at high temperatures, unlike in bulk, changes the direct-type band to the indirect to suppress recombination of electron and hole, thereby letting these accumulated carriers overcome the potential barrier between perovskite and charge transfer materials, which promotes the solar-cell efficiency.
The break-up of a nanowire with an organic ligand shell into discrete droplets is analysed in terms of the Rayleigh-Plateau instability. Explicit account is taken of the effect of the organic ligand shell upon the energetics and kinetics of surface d iffusion in the wire. Both an initial perturbation analysis and a full numerical analysis of the evolution in wire morphology are conducted, and the governing non-dimensional groups are identified. The perturbation analysis is remarkably accurate in obtaining the main features of the instability, including the pinch-off time and the resulting diameter of the droplets. It is conjectured that the surface energy of the wire and surrounding organic shell depends upon both the mean and deviatoric invariants of the curvature tensor. Such a behaviour allows for the possibility of a stable nanowire such that the Rayleigh-Plateau instability is not energetically favourable. A stability map illustrates this. Maps are also constructed for the final droplet size and pinch-off time as a function of two non-dimensional groups that characterise the energetics and kinetics of diffusion in the presence of the organic shell. These maps can guide future experimental activity on the stabilisation of nanowires by organic ligand shells.
Behaving like atomically-precise two-dimensional quantum wells with non-negligible dielectric contrast, the layered HOIPs have strong electronic interactions leading to tightly bound excitons with binding energies on the order of 500 meV. These stron g interactions suggest the possibility of larger excitonic complexes like trions and biexcitons, which are hard to study numerically due to the complexity of the layered HOIPs. Here, we propose and parameterize a model Hamiltonian for excitonic complexes in layered HOIPs and we study the correlated eigenfunctions of trions and biexcitons using a combination of diffusion Monte Carlo and very large variational calculations with explicitly correlated Gaussian basis functions. Binding energies and spatial structures of these complexes are presented as a function of the layer thickness. The trion and biexciton of the thinnest layered HOIP have binding energies of 35 meV and 44 meV, respectively, whereas a single exfoliated layer is predicted to have trions and biexcitons with equal binding enegies of 48 meV. We compare our findings to available experimental data and to that of other quasi-two-dimensional materials.
For a class of 2D hybrid organic-inorganic perovskite semiconductors based on $pi$-conjugated organic cations, we predict quantitatively how varying the organic and inorganic component allows control over the nature, energy and localization of carrie r states in a quantum-well-like fashion. Our first-principles predictions, based on large-scale hybrid density-functional theory with spin-orbit coupling, show that the interface between the organic and inorganic parts within a single hybrid can be modulated systematically, enabling us to select between different type-I and type-II energy level alignments. Energy levels, recombination properties and transport behavior of electrons and holes thus become tunable by choosing specific organic functionalizations and juxtaposing them with suitable inorganic components.
Here we demonstrate that significant progress in this area may be achieved by introducing structural elements that form hydrogen bonds with environment. Considering several examples of hybrid framework materials with different structural ordering con taining protonated sulfonium cation H3S+ that forms strong hydrogen bonds with electronegative halogen anions (Cl-, F-), we found that hydrogen bonding increases the structural stability of the material and may be used for tuning electronic states near the bandgap. We suggest that such a behavior has a universal character and should be observed in hybrid inorganic-organic framework materials containing protonated cations. This effect may serve as a viable route for optoelectronic and photovoltaic applications.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا