ﻻ يوجد ملخص باللغة العربية
Perovskite solar cells have shown remarkable efficiencies beyond 22%, through organic and inorganic cation alloying. However, the role of alkali-metal cations is not well-understood. By using synchrotron-based nano-X-ray fluorescence and complementary measurements, we show that when adding RbI and/or CsI the halide distribution becomes homogenous. This homogenization translates into long-lived charge carrier decays, spatially homogenous carrier dynamics visualized by ultrafast microscopy, as well as improved photovoltaic device performance. We find that Rb and K phase-segregate in highly concentrated aggregates. Synchrotron-based X-ray-beam-induced current and electron-beam-induced current of solar cells show that Rb clusters do not contribute to the current and are recombination active. Our findings bring light to the beneficial effects of alkali metal halides in perovskites, and point at areas of weakness in the elemental composition of these complex perovskites, paving the way to improved performance in this rapidly growing family of materials for solar cell applications.
Behaving like atomically-precise two-dimensional quantum wells with non-negligible dielectric contrast, the layered HOIPs have strong electronic interactions leading to tightly bound excitons with binding energies on the order of 500 meV. These stron
Metal halide perovskites (MHPs) are nowadays one of the most studied semiconductors due to their exceptional performance as active layers in solar cells. Although MHPs are excellent solid-state semiconductors, they are also ionic compounds, where ion
The organic-inorganic hybrid lead trihalide perovskites have been emerging as the most attractive photovoltaic material. As regulated by Shockley-Queisser theory, a formidable materials science challenge for the next level improvement requires furthe
For a class of 2D hybrid organic-inorganic perovskite semiconductors based on $pi$-conjugated organic cations, we predict quantitatively how varying the organic and inorganic component allows control over the nature, energy and localization of carrie
The acoustic phonons in the organic-inorganic lead halide perovskites have been reported to have anomalously short lifetimes over a large part of the Brillouin zone. The resulting shortened mean free paths of the phonons have been implicated as the o