ترغب بنشر مسار تعليمي؟ اضغط هنا

A simple dynamical model of a freely-falling train of rigid segments

38   0   0.0 ( 0 )
 نشر من قبل Tomoaki Itano
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In order to elucidate the process underpinning the apparently counterintuitive phenomena observed in the freefall experiments conducted by E. Hamm and J. Geminard [Amer. J. Phys. 78, 828 (2010)], we construct a simple dynamical model of a vertically falling train of one-dimensional rigid segments impinging onto an inelastic horizontal plate in three-dimensional space. Numerically integrating the nonlinear governing equations, we obtain a robust result that the train of rigid segments falls virtually faster than freefall under gravity. The presented model reproduces the coiling spontaneously formed in the pile, which is considered to be a key mechanism of the phenomenon and is shown to be a consequence of the three-dimensional spiral structure that arises due to dissipative locking in mid-air. As one of mechanical keys underpinning the apparently counterintuitive phenomena, we will here focus the downward tensile force exerted by the pile.

قيم البحث

اقرأ أيضاً

138 - Bin Guo , Shaun Hampton 2021
We study a freely falling graviton propagating in AdS in the context of the D1D5 CFT, where we introduce an interaction by turning on a deformation operator. We start with one left and right moving boson in the CFT. After applying two deformation ope rators, the initial bosons split into three left moving and three right moving bosons. We compute the amplitude for various energies and extrapolate the result to the large energy region. At early times, the amplitude is linear in time. This corresponds to an infalling graviton becoming redshifted in AdS. At late times, the amplitude is periodic, which agrees with the fact that a freely falling graviton will not be thermalized.
We take a closer and new look at the effects of tidal forces on the free fall of a quantum particle inside a spherically symmetric gravitational field. We derive the corresponding Schrodinger equation for the particle by starting from the fully relat ivistic Klein-Gordon equation in order (i) to briefly discuss the issue of the equivalence principle and (ii) to be able to compare the relativistic terms in the equation to the tidal-force terms. To the second order of the nonrelativistic approximation, the resulting Schrodinger equation is that of a simple harmonic oscillator in the horizontal direction and that of an inverted harmonic oscillator in the vertical direction. Two methods are used for solving the equation in the vertical direction. The first method is based on a fixed boundary condition, and yields a discrete-energy spectrum with a wavefunction that is asymptotic to that of a particle in a linear gravitational field. The second method is based on time-varying boundary conditions and yields a quantized-energy spectrum that is decaying in time. Moving on to a freely-falling reference frame, we derive the corresponding time-dependent energy spectrum. The effects of tidal forces yield an expectation value for the Hamiltonian and a relative change in time of a wavepackets width that are mass-independent. The equivalence principle, which we understand here as the empirical equivalence between gravitation and inertia, is discussed based on these various results. For completeness, we briefly discuss the consequences expected to be obtained for a Bose-Einstein condensate or a superfluid in free fall using the nonlinear Gross-Pitaevskii equation.
Deciding whether a family of disjoint line segments in the plane can be linked into a simple polygon (or a simple polygonal chain) by adding segments between their endpoints is NP-hard.
Particle beams are important tools for probing atomic and molecular interactions. Here we demonstrate that particle beams also offer a unique opportunity to investigate interactions in macroscopic systems, such as granular media. Motivated by recent experiments on streams of grains that exhibit liquid-like breakup into droplets, we use molecular dynamics simulations to investigate the evolution of a dense stream of macroscopic spheres accelerating out of an opening at the bottom of a reservoir. We show how nanoscale details associated with energy dissipation during collisions modify the streams macroscopic behavior. We find that inelastic collisions collimate the stream, while the presence of short-range attractive interactions drives structure formation. Parameterizing the collision dynamics by the coefficient of restitution (i.e., the ratio of relative velocities before and after impact) and the strength of the cohesive interaction, we map out a spectrum of behaviors that ranges from gas-like jets in which all grains drift apart to liquid-like streams that break into large droplets containing hundreds of grains. We also find a new, intermediate regime in which small aggregates form by capture from the gas phase, similar to what can be observed in molecular beams. Our results show that nearly all aspects of stream behavior are closely related to the velocity gradient associated with vertical free fall. Led by this observation, we propose a simple energy balance model to explain the droplet formation process. The qualitative as well as many quantitative features of the simulations and the model compare well with available experimental data and provide a first quantitative measure of the role of attractions in freely cooling granular streams.
We introduce a simple model of dynamical supersymmetry breaking. It is like a supersymmetric version of a Nambu--Jona-Lasinio model with a spin one composite. The simplest version of the model as presented here has a single chiral superfield (multipl et) with a four-superfield interaction. The latter has the structure of the square of the superfield magnitude square. A vacuum condensate of the latter is illustrated to develop giving rise to supersymmetry breaking with a soft mass term for the superfield. We report also the effective theory picture with a real superfield composite, illustrating the matching effective potential analysis and the vacuum solution conditions for the components. The nature of its fermionic part as the Goldstone mode is presented. Phenomenological application to the supersymmetric standard model is plausible.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا