ترغب بنشر مسار تعليمي؟ اضغط هنا

Droplet and cluster formation in freely falling granular streams

269   0   0.0 ( 0 )
 نشر من قبل Scott Waitukaitis R
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Particle beams are important tools for probing atomic and molecular interactions. Here we demonstrate that particle beams also offer a unique opportunity to investigate interactions in macroscopic systems, such as granular media. Motivated by recent experiments on streams of grains that exhibit liquid-like breakup into droplets, we use molecular dynamics simulations to investigate the evolution of a dense stream of macroscopic spheres accelerating out of an opening at the bottom of a reservoir. We show how nanoscale details associated with energy dissipation during collisions modify the streams macroscopic behavior. We find that inelastic collisions collimate the stream, while the presence of short-range attractive interactions drives structure formation. Parameterizing the collision dynamics by the coefficient of restitution (i.e., the ratio of relative velocities before and after impact) and the strength of the cohesive interaction, we map out a spectrum of behaviors that ranges from gas-like jets in which all grains drift apart to liquid-like streams that break into large droplets containing hundreds of grains. We also find a new, intermediate regime in which small aggregates form by capture from the gas phase, similar to what can be observed in molecular beams. Our results show that nearly all aspects of stream behavior are closely related to the velocity gradient associated with vertical free fall. Led by this observation, we propose a simple energy balance model to explain the droplet formation process. The qualitative as well as many quantitative features of the simulations and the model compare well with available experimental data and provide a first quantitative measure of the role of attractions in freely cooling granular streams.

قيم البحث

اقرأ أيضاً

The kinetic energy of a freely cooling granular gas decreases as a power law $t^{-theta}$ at large times $t$. Two theoretical conjectures exist for the exponent $theta$. One based on ballistic aggregation of compact spherical aggregates predicts $the ta= 2d/(d+2)$ in $d$ dimensions. The other based on Burgers equation describing anisotropic, extended clusters predicts $theta=d/2$ when $2le d le 4$. We do extensive simulations in three dimensions to find that while $theta$ is as predicted by ballistic aggregation, the cluster statistics and velocity distribution differ from it. Thus, the freely cooling granular gas fits to neither the ballistic aggregation or a Burgers equation description.
138 - Bin Guo , Shaun Hampton 2021
We study a freely falling graviton propagating in AdS in the context of the D1D5 CFT, where we introduce an interaction by turning on a deformation operator. We start with one left and right moving boson in the CFT. After applying two deformation ope rators, the initial bosons split into three left moving and three right moving bosons. We compute the amplitude for various energies and extrapolate the result to the large energy region. At early times, the amplitude is linear in time. This corresponds to an infalling graviton becoming redshifted in AdS. At late times, the amplitude is periodic, which agrees with the fact that a freely falling graviton will not be thermalized.
Many clays, soils, biological tissues, foods, and coatings are shrinkable, granular materials: they are composed of packed, hydrated grains that shrink when dried. In many cases, these packings crack during drying, critically hindering applications. However, while cracking has been widely studied for bulk gels and packings of non-shrinkable grains, little is known about how packings of shrinkable grains crack. Here, we elucidate how grain shrinkage alters cracking during drying. Using experiments with model shrinkable hydrogel beads, we show that differential shrinkage can dramatically alter crack evolution during drying---in some cases, even causing cracks to spontaneously self-close. In other cases, packings shrink without cracking or crack irreversibly. We developed both granular and continuum models to quantify the interplay between grain shrinkage, poromechanics, packing size, drying rate, capillarity, and substrate friction on cracking. Guided by the theory, we also found that cracking can be completely altered by varying the spatial profile of drying. Our work elucidates the rich physics underlying cracking in shrinkable, granular packings, and yields new strategies for controlling crack evolution.
Neicu and Kudrolli observed experimentally spontaneous formation of the long-range orientational order and large-scale vortices in a system of vibrated macroscopic rods. We propose a phenomenological theory of this phenomenon, based on a coupled syst em of equations for local rods density and tilt. The density evolution is described by modified Cahn-Hilliard equation, while the tilt is described by the Ginzburg-Landau type equation. Our analysis shows that, in accordance to the Cahn-Hilliard dynamics, the islands of the ordered phase appear spontaneously and grow due to coarsening. The generic vortex solutions of the Ginzburg-Landau equation for the tilt correspond to the vortical motion of the rods around the cores which are located near the centers of the islands.
Granular fronts are a common yet unexplained phenomenon emerging during the gravity driven free-surface flow of concentrated suspensions. They are usually believed to be the result of fluid convection in combination with particle size segregation. Ho wever, suspensions composed of uniformly sized particles also develop a granular front. Within a large rotating drum, a stationary recirculating avalanche is generated. The flowing material is a mixture of a visco-plastic fluid obtained from a kaolin-water dispersion, with spherical ceramic particles denser than the fluid. The goal is to mimic the composition of many common granular-fluid materials, like fresh concrete or debris flow. In these materials, granular and fluid phases have the natural tendency to segregate due to particle settling. However, through the shearing caused by the rotation of the drum, a reorganization of the phases is induced, leading to the formation of a granular front. By tuning the material properties and the drum velocity, it is possible to control this phenomenon. The setting is reproduced in a numerical environment, where the fluid is solved by a Lattice-Boltzmann Method, and the particles are explicitly represented using the Discrete Element Method. The simulations confirm the findings of the experiments, and provide insight into the internal mechanisms. Comparing the time-scale of particle settling with the one of particle recirculation, a non-dimensional number is defined, and is found to be effective in predicting the formation of a granular front.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا