ترغب بنشر مسار تعليمي؟ اضغط هنا

2017 upgrade and performance of BICEP3: a 95GHz refracting telescope for degree-scale CMB polarization

63   0   0.0 ( 0 )
 نشر من قبل Jae Hwan Kang
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

BICEP3 is a 520mm aperture on-axis refracting telescope observing the polarization of the cosmic microwave background (CMB) at 95GHz in search of the B-mode signal originating from inflationary gravitational waves. BICEP3s focal plane is populated with modularized tiles of antenna-coupled transition edge sensor (TES) bolometers. BICEP3 was deployed to the South Pole during 2014-15 austral summer and has been operational since. During the 2016-17 austral summer, we implemented changes to optical elements that lead to better noise performance. We discuss this upgrade and show the performance of BICEP3 at its full mapping speed from the 2017 and 2018 observing seasons. BICEP3 achieves an order-of-magnitude improvement in mapping speed compared to a Keck 95GHz receiver. We demonstrate $6.6mu Ksqrt{s}$ noise performance of the BICEP3 receiver.



قيم البحث

اقرأ أيضاً

149 - Z. Ahmed , M. Amiri , S. J. Benton 2014
BICEP3 is a 550 mm-aperture refracting telescope for polarimetry of radiation in the cosmic microwave background at 95 GHz. It adopts the methodology of BICEP1, BICEP2 and the Keck Array experiments - it possesses sufficient resolution to search for signatures of the inflation-induced cosmic gravitational-wave background while utilizing a compact design for ease of construction and to facilitate the characterization and mitigation of systematics. However, BICEP3 represents a significant breakthrough in per-receiver sensitivity, with a focal plane area 5$times$ larger than a BICEP2/Keck Array receiver and faster optics ($f/1.6$ vs. $f/2.4$). Large-aperture infrared-reflective metal-mesh filters and infrared-absorptive cold alumina filters and lenses were developed and implemented for its optics. The camera consists of 1280 dual-polarization pixels; each is a pair of orthogonal antenna arrays coupled to transition-edge sensor bolometers and read out by multiplexed SQUIDs. Upon deployment at the South Pole during the 2014-15 season, BICEP3 will have survey speed comparable to Keck Array 150 GHz (2013), and will significantly enhance spectral separation of primordial B-mode power from that of possible galactic dust contamination in the BICEP2 observation patch.
BICEP3 is a $550~mm$ aperture telescope with cold, on-axis, refractive optics designed to observe at the $95~GHz$ band from the South Pole. It is the newest member of the BICEP/Keck family of inflationary probes specifically designed to measure the p olarization of the cosmic microwave background (CMB) at degree-angular scales. BICEP3 is designed to house 1280 dual-polarization pixels, which, when fully-populated, totals to $sim$9$times$ the number of pixels in a single Keck $95~GHz$ receiver, thus further advancing the BICEP/Keck programs $95~GHz$ mapping speed. BICEP3 was deployed during the austral summer of 2014-2015 with 9 detector tiles, to be increased to its full capacity of 20 in the second season. After instrument characterization measurements were taken, CMB observation commenced in April 2015. Together with multi-frequency observation data from Planck, BICEP2, and the Keck Array, BICEP3 is projected to set upper limits on the tensor-to-scalar ratio to $r$ $lesssim 0.03$ at $95%$ C.L..
BICEP3 is a 520 mm aperture, compact two-lens refractor designed to observe the polarization of the cosmic microwave background (CMB) at 95 GHz. Its focal plane consists of modularized tiles of antenna-coupled transition edge sensors (TESs), similar to those used in BICEP2 and the Keck Array. The increased per-receiver optical throughput compared to BICEP2/Keck Array, due to both its faster f/1.7 optics and the larger aperture, more than doubles the combined mapping speed of the BICEP/Keck program. The BICEP3 receiver was recently upgraded to a full complement of 20 tiles of detectors (2560 TESs) and is now beginning its second year of observation (and first science season) at the South Pole. We report on its current performance and observing plans. Given its high per-receiver throughput while maintaining the advantages of a compact design, BICEP3-class receivers are ideally suited as building blocks for a 3rd-generation CMB experiment, consisting of multiple receivers spanning 35 GHz to 270 GHz with total detector count in the tens of thousands. We present plans for such an array, the new BICEP Array that will replace the Keck Array at the South Pole, including design optimization, frequency coverage, and deployment/observing strategies.
[Abridged] The measurement of the polarization of the Cosmic Microwave Background radiation is one of the current frontiers in cosmology. In particular, the detection of the primordial B-modes, could reveal the presence of gravitational waves in the early Universe. The detection of such component is at the moment the most promising technique to probe the inflationary theory describing the very early evolution of the Universe. We present the updated performance forecast of the Large Scale Polarization Explorer (LSPE), a program dedicated to the measurement of the CMB polarization. LSPE is composed of two instruments: Strip, a radiometer-based telescope on the ground in Tenerife, and SWIPE (Short-Wavelength Instrument for the Polarization Explorer) a bolometer-based instrument designed to fly on a winter arctic stratospheric long-duration balloon. The program is among the few dedicated to observation of the Northern Hemisphere, while most of the international effort is focused into ground-based observation in the Southern Hemisphere. Measurements are currently scheduled in Winter 2021/22 for SWIPE, with a flight duration up to 15 days, and in Summer 2021 with two years observations for Strip. We describe the main features of the two instruments, identifying the most critical aspects of the design, in terms of impact into performance forecast. We estimate the expected sensitivity of each instrument and propagate their combined observing power to the sensitivity to cosmological parameters, including the effect of scanning strategy, component separation, residual foregrounds and partial sky coverage. We also set requirements on the control of the most critical systematic effects and describe techniques to mitigate their impact. LSPE can reach a sensitivity in tensor-to-scalar ratio of $sigma_r<0.01$, and improve constrains on other cosmological parameters.
BICEP Array is the newest multi-frequency instrument in the BICEP/Keck Array program. It is comprised of four 550 mm aperture refractive telescopes observing the polarization of the cosmic microwave background (CMB) at 30/40, 95, 150 and 220/270 GHz with over 30,000 detectors. We present an overview of the receiver, detailing the optics, thermal, mechanical, and magnetic shielding design. BICEP Array follows BICEP3s modular focal plane concept, and upgrades to 6 wafer to reduce fabrication with higher detector count per module. The first receiver at 30/40 GHz is expected to start observing at the South Pole during the 2019-20 season. By the end of the planned BICEP Array program, we project $sigma(r) sim 0.003$, assuming current modeling of polarized Galactic foreground and depending on the level of delensing that can be achieved with higher resolution maps from the South Pole Telescope.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا