ﻻ يوجد ملخص باللغة العربية
[Abridged] The measurement of the polarization of the Cosmic Microwave Background radiation is one of the current frontiers in cosmology. In particular, the detection of the primordial B-modes, could reveal the presence of gravitational waves in the early Universe. The detection of such component is at the moment the most promising technique to probe the inflationary theory describing the very early evolution of the Universe. We present the updated performance forecast of the Large Scale Polarization Explorer (LSPE), a program dedicated to the measurement of the CMB polarization. LSPE is composed of two instruments: Strip, a radiometer-based telescope on the ground in Tenerife, and SWIPE (Short-Wavelength Instrument for the Polarization Explorer) a bolometer-based instrument designed to fly on a winter arctic stratospheric long-duration balloon. The program is among the few dedicated to observation of the Northern Hemisphere, while most of the international effort is focused into ground-based observation in the Southern Hemisphere. Measurements are currently scheduled in Winter 2021/22 for SWIPE, with a flight duration up to 15 days, and in Summer 2021 with two years observations for Strip. We describe the main features of the two instruments, identifying the most critical aspects of the design, in terms of impact into performance forecast. We estimate the expected sensitivity of each instrument and propagate their combined observing power to the sensitivity to cosmological parameters, including the effect of scanning strategy, component separation, residual foregrounds and partial sky coverage. We also set requirements on the control of the most critical systematic effects and describe techniques to mitigate their impact. LSPE can reach a sensitivity in tensor-to-scalar ratio of $sigma_r<0.01$, and improve constrains on other cosmological parameters.
The LSPE is a balloon-borne mission aimed at measuring the polarization of the Cosmic Microwave Background (CMB) at large angular scales, and in particular to constrain the curl component of CMB polarization (B-modes) produced by tensor perturbations
The Large Scale Polarization Explorer (LSPE) is a cosmology program for the measurement of large scale curl-like features (B-modes) in the polarization of the Cosmic Microwave Background. Its goal is to constrain the background of inflationary gravit
The balloon-borne LSPE mission is optimized to measure the linear polarization of the Cosmic Microwave Background at large angular scales. The Short Wavelength Instrument for the Polarization Explorer (SWIPE) is composed of 3 arrays of multi-mode bol
We discuss the design and expected performance of STRIP (STRatospheric Italian Polarimeter), an array of coherent receivers designed to fly on board the LSPE (Large Scale Polarization Explorer) balloon experiment. The STRIP focal plane array comprise
Variable-delay Polarization Modulators (VPMs) are currently being implemented in experiments designed to measure the polarization of the cosmic microwave background on large angular scales because of their capability for providing rapid, front-end po