ترغب بنشر مسار تعليمي؟ اضغط هنا

Initial Performance of BICEP3: A Degree Angular Scale 95 GHz Band Polarimeter

256   0   0.0 ( 0 )
 نشر من قبل W.L. Kimmy Wu
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

BICEP3 is a $550~mm$ aperture telescope with cold, on-axis, refractive optics designed to observe at the $95~GHz$ band from the South Pole. It is the newest member of the BICEP/Keck family of inflationary probes specifically designed to measure the polarization of the cosmic microwave background (CMB) at degree-angular scales. BICEP3 is designed to house 1280 dual-polarization pixels, which, when fully-populated, totals to $sim$9$times$ the number of pixels in a single Keck $95~GHz$ receiver, thus further advancing the BICEP/Keck programs $95~GHz$ mapping speed. BICEP3 was deployed during the austral summer of 2014-2015 with 9 detector tiles, to be increased to its full capacity of 20 in the second season. After instrument characterization measurements were taken, CMB observation commenced in April 2015. Together with multi-frequency observation data from Planck, BICEP2, and the Keck Array, BICEP3 is projected to set upper limits on the tensor-to-scalar ratio to $r$ $lesssim 0.03$ at $95%$ C.L..



قيم البحث

اقرأ أيضاً

149 - Z. Ahmed , M. Amiri , S. J. Benton 2014
BICEP3 is a 550 mm-aperture refracting telescope for polarimetry of radiation in the cosmic microwave background at 95 GHz. It adopts the methodology of BICEP1, BICEP2 and the Keck Array experiments - it possesses sufficient resolution to search for signatures of the inflation-induced cosmic gravitational-wave background while utilizing a compact design for ease of construction and to facilitate the characterization and mitigation of systematics. However, BICEP3 represents a significant breakthrough in per-receiver sensitivity, with a focal plane area 5$times$ larger than a BICEP2/Keck Array receiver and faster optics ($f/1.6$ vs. $f/2.4$). Large-aperture infrared-reflective metal-mesh filters and infrared-absorptive cold alumina filters and lenses were developed and implemented for its optics. The camera consists of 1280 dual-polarization pixels; each is a pair of orthogonal antenna arrays coupled to transition-edge sensor bolometers and read out by multiplexed SQUIDs. Upon deployment at the South Pole during the 2014-15 season, BICEP3 will have survey speed comparable to Keck Array 150 GHz (2013), and will significantly enhance spectral separation of primordial B-mode power from that of possible galactic dust contamination in the BICEP2 observation patch.
BICEP3 is a 520mm aperture on-axis refracting telescope observing the polarization of the cosmic microwave background (CMB) at 95GHz in search of the B-mode signal originating from inflationary gravitational waves. BICEP3s focal plane is populated wi th modularized tiles of antenna-coupled transition edge sensor (TES) bolometers. BICEP3 was deployed to the South Pole during 2014-15 austral summer and has been operational since. During the 2016-17 austral summer, we implemented changes to optical elements that lead to better noise performance. We discuss this upgrade and show the performance of BICEP3 at its full mapping speed from the 2017 and 2018 observing seasons. BICEP3 achieves an order-of-magnitude improvement in mapping speed compared to a Keck 95GHz receiver. We demonstrate $6.6mu Ksqrt{s}$ noise performance of the BICEP3 receiver.
BICEP Array is the newest multi-frequency instrument in the BICEP/Keck Array program. It is comprised of four 550 mm aperture refractive telescopes observing the polarization of the cosmic microwave background (CMB) at 30/40, 95, 150 and 220/270 GHz with over 30,000 detectors. We present an overview of the receiver, detailing the optics, thermal, mechanical, and magnetic shielding design. BICEP Array follows BICEP3s modular focal plane concept, and upgrades to 6 wafer to reduce fabrication with higher detector count per module. The first receiver at 30/40 GHz is expected to start observing at the South Pole during the 2019-20 season. By the end of the planned BICEP Array program, we project $sigma(r) sim 0.003$, assuming current modeling of polarized Galactic foreground and depending on the level of delensing that can be achieved with higher resolution maps from the South Pole Telescope.
BICEP3 is a small-aperture refracting cosmic microwave background (CMB) telescope designed to make sensitive polarization maps in pursuit of a potential B-mode signal from inflationary gravitational waves. It is the latest in the BICEP/Keck Array ser ies of CMB experiments at the South Pole, which has provided the most stringent constraints on inflation to date. For the 2016 observing season, BICEP3 was outfitted with a full suite of 2400 optically coupled detectors operating at 95 GHz. In these proceedings we report on the far field beam performance using calibration data taken during the 2015-2016 summer deployment season in situ with a thermal chopped source. We generate high-fidelity per-detector beam maps, show the array-averaged beam profile, and characterize the differential beam response between co-located, orthogonally polarized detectors which contributes to the leading instrumental systematic in pair differencing experiments. We find that the levels of differential pointing, beamwidth, and ellipticity are similar to or lower than those measured for BICEP2 and Keck Array. The magnitude and distribution of BICEP3s differential beam mismatch - and the level to which temperature-to-polarization leakage may be marginalized over or subtracted in analysis - will inform the design of next-generation CMB experiments with many thousands of detectors.
BICEP3 is a 520 mm aperture, compact two-lens refractor designed to observe the polarization of the cosmic microwave background (CMB) at 95 GHz. Its focal plane consists of modularized tiles of antenna-coupled transition edge sensors (TESs), similar to those used in BICEP2 and the Keck Array. The increased per-receiver optical throughput compared to BICEP2/Keck Array, due to both its faster f/1.7 optics and the larger aperture, more than doubles the combined mapping speed of the BICEP/Keck program. The BICEP3 receiver was recently upgraded to a full complement of 20 tiles of detectors (2560 TESs) and is now beginning its second year of observation (and first science season) at the South Pole. We report on its current performance and observing plans. Given its high per-receiver throughput while maintaining the advantages of a compact design, BICEP3-class receivers are ideally suited as building blocks for a 3rd-generation CMB experiment, consisting of multiple receivers spanning 35 GHz to 270 GHz with total detector count in the tens of thousands. We present plans for such an array, the new BICEP Array that will replace the Keck Array at the South Pole, including design optimization, frequency coverage, and deployment/observing strategies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا