ترغب بنشر مسار تعليمي؟ اضغط هنا

Dimensional Reduction and Crossover to Mean-Field Behavior for Branched Polymers

189   0   0.0 ( 0 )
 نشر من قبل John Z. Imbrie
 تاريخ النشر 2003
  مجال البحث فيزياء
والبحث باللغة English
 تأليف John Z. Imbrie




اسأل ChatGPT حول البحث

This article will review recent results on dimensional reduction for branched polymers, and discuss implications for critical phenomena. Parisi and Sourlas argued in 1981 that branched polymers fall into the universality class of the Yang-Lee edge in two fewer dimensions. Brydges and I have proven in [math-ph/0107005] that the generating function for self-avoiding branched polymers in D+2 continuum dimensions is proportional to the pressure of the hard-core continuum gas at negative activity in D dimensions (which is in the Yang-Lee or $i phi^3$ class). I will describe how this equivalence arises from an underlying supersymmetry of the branched polymer model. - I will also use dimensional reduction to analyze the crossover of two-dimensional branched polymers to their mean-field limit, and to show that the scaling is given by an Airy function (the same as in [cond-mat/0107223]).

قيم البحث

اقرأ أيضاً

We establish an exact relation between self-avoiding branched polymers in D+2 continuum dimensions and the hard-core continuum gas at negative activity in D dimensions. We review conjectures and results on critical exponents for D+2 = 2,3,4 and show that they are corollaries of our result. We explain the connection (first proposed by Parisi and Sourlas) between branched polymers in D+2 dimensions and the Yang-Lee edge singularity in D dimensions.
105 - John Z. Imbrie 2004
Dimensional reduction occurs when the critical behavior of one system can be related to that of another system in a lower dimension. We show that this occurs for directed branched polymers (DBP) by giving an exact relationship between DBP models in D +1 dimensions and repulsive gases at negative activity in D dimensions. This implies relations between exponents of the two models: $gamma(D+1)=alpha(D)$ (the exponent describing the singularity of the pressure), and $ u_{perp}(D+1)= u(D)$ (the correlation length exponent of the repulsive gas). It also leads to the relation $theta(D+1)=1+sigma(D)$, where $sigma(D)$ is the Yang-Lee edge exponent. We derive exact expressions for the number of DBP of size N in two dimensions.
In [math-ph/0107005] we have proven that the generating function for self-avoiding branched polymers in D+2 continuum dimensions is proportional to the pressure of the hard-core continuum gas at negative activity in D dimensions. This result explains why the critical behavior of branched polymers should be the same as that of the $i phi^3$ (or Yang-Lee edge) field theory in two fewer dimensions (as proposed by Parisi and Sourlas in 1981). - In this article we review and generalize the results of [math-ph/0107005]. We show that the generating functions for several branched polymers are proportional to correlation functions of the hard-core gas. We derive Ward identities for certain branched polymer correlations. We give reduction formulae for multi-species branched polymers and the corresponding repulsive gases. Finally, we derive the massive scaling limit for the 2-point function of the one-dimensional hard-core gas, and thereby obtain the scaling form of the 2-point function for branched polymers in three dimensions.
We discuss spin models on complete graphs in the mean-field (infinite-vertex) limit, especially the classical XY model, the Toy model of the Higgs sector, and related generalizations. We present a number of results coming from the theory of large dev iations and Steins method, in particular, Cramer and Sanov-type results, limit theorems with rates of convergence, and phase transition behavior for these models.
In this paper, we consider nearest-neighbor oriented percolation with independent Bernoulli bond-occupation probability on the $d$-dimensional body-centered cubic (BCC) lattice $mathbb{L}^d$ and the set of non-negative integers $mathbb{Z}_+$. Thanks to the nice structure of the BCC lattice, we prove that the infrared bound holds on $mathbb{L}^dtimesmathbb{Z}_+$ in all dimensions $dgeq 9$. As opposed to ordinary percolation, we have to deal with the complex numbers due to asymmetry induced by time-orientation, which makes it hard to estimate the bootstrapping functions in the lace-expansion analysis from above. By investigating the Fourier-Laplace transform of the random-walk Green function and the two-point function, we drive the key properties to obtain the upper bounds and resolve a problematic issue in Nguyen and Yangs bound.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا