ترغب بنشر مسار تعليمي؟ اضغط هنا

Pressure Induced Compression of Flatbands in Twisted Bilayer Graphene

118   0   0.0 ( 0 )
 نشر من قبل Jeil Jung
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the bandwidth compression due to out of plane pressure of the moire flatbands near charge neutrality in twisted bilayer graphene for a continuous range of small rotation angles of up to $sim2.5^{circ}$. The flatband bandwidth minima angles are found to grow linearly with interlayer coupling {omega} and decrease with Fermi velocity. Application of moderate pressure values of up to 2.5 GPa achievable through a hydraulic press should allow accessing a flatband for angles as large as $sim 1.5$^{circ}$ instead of $sim 1 circ$ at zero pressure. This reduction of the moire pattern length for larger twist angle implies an increase of the effective Coulomb interaction scale per moire cell by about 50% and enhance roughly by a factor of $sim 2$ the elastic energy that resists the commensuration strains due to the moire pattern. Our results suggest that application of pressure on twisted bilayer graphene nanodevices through a hydraulic press will notably facilitate the device preparation efforts required for exploring the ordered phases near magic angle flatbands.



قيم البحث

اقرأ أيضاً

Flatbands with extremely narrow bandwidths on the order of a few mili-electron volts can appear in twisted multilayer graphene systems for appropriate system parameters. Here we investigate the electronic structure of a twisted bi-bilayer graphene, o r twisted double bilayer graphene, to find the parameter space where isolated flatbands can emerge as a function of twist angle, vertical pressure, and interlayer potential differences. We find that in twisted bi-bilayer graphene the bandwidth is generally flatter than in twisted bilayer graphene by roughly up to a factor of two in the same parameter space of twist angle $theta$ and interlayer coupling $omega$, making it in principle simpler to tailor narrow bandwidth flatbands. Application of vertical pressure can enhance the first magic angle in minimal models at $theta sim 1.05^{circ}$ to larger values of up to $theta sim 1.5^{circ}$ when $ P sim 2.5$~GPa, where $theta propto omega/ upsilon_{F}$. Narrow bandwidths are expected in bi-bilayers for a continuous range of small twist angles, i.e. without magic angles, when intrinsic bilayer gaps open by electric fields, or due to remote hopping terms. We find that moderate vertical electric fields can contribute in lifting the degeneracy of the low energy flatbands by enhancing the primary gap near the Dirac point and the secondary gap with the higher energy bands. Distinct valley Chern bands are expected near $0^{circ}$ or $180^{circ}$ alignments.
137 - C. De Beule , F. Dominguez , 2020
We construct a phenomenological scattering theory for the triangular network of valley Hall states that arises in twisted bilayer graphene under interlayer bias. Crucially, our network model includes scattering between different valley Hall states wi thin the same valley and spin. We show that in the absence of forward scattering, symmetries reduce the network model to a single parameter that interpolates between a nested Fermi surface and flatbands, which can be understood in terms of one-dimensional chiral zigzag modes and closed triangular orbits, respectively. We demonstrate how unitarity and symmetry constrain the couplings between zigzag modes, which has important implications on the nature of interference oscillations observed in experiments.
We theoretically calculate the impurity-scattering induced resistivity of twisted bilayer graphene at low twist angles where the graphene Fermi velocity is strongly suppressed. We consider, as a function of carrier density, twist angle, and temperatu re, both long-ranged Coulomb scattering and short-ranged defect scattering within a Boltzmann theory relaxation time approach. For experimentally relevant disorder, impurity scattering contributes a resistivity comparable to (much larger than) the phonon scattering contribution at high (low) temperatures. Decreasing twist angle leads to larger resistivity, and in general, the resistivity increases (decreases) with increasing temperature (carrier density). Inclusion of the van Hove singularity in the theory leads to a strong increase in the resistivity at higher densities, where the chemical potential is close to a van Hove singularity, leading to an apparent density-dependent plateau type structure in the resistivity, which has been observed in recent transport experiments. We also show that the Matthissens rule is strongly violated in twisted bilayer graphene at low twist angles.
The interlayer van der Waals interaction in twisted bilayer graphene (tBLG) induces both in-plane and out-of-plane atomic displacements showing complex patterns that depend on the twist angle. In particular, for small twist angles, within each graphe ne layer, the relaxations give rise to a vortex-like displacement pattern which is known to affect the dispersion of the flat bands. Here, we focus on yet another structural property, the chirality of the twisted bilayer. We perform first-principles calculations based on density functional theory to investigate the properties induced by twist chirality in both real and momentum space. In real space, we study the interplay between twist chirality and atomic relaxation patterns. In momentum space, we investigate the spin textures around the $K$ points of the Brillouin zone, showing that alternating vortex-like textures are correlated with the chirality of tBLG. Interestingly, the helicity of each vortex is inverted by changing the chirality while the different twist angles also modify the spin textures. We discuss the origin of the spin textures by calculating the layer weights and using plot regression models.
Twisted bilayer graphene (TBG) exhibits fascinating correlation-driven phenomena like the superconductivity and Mott insulating state, with flat bands and a chiral lattice structure. We find by quantum transport calculations that the chirality leads to a giant unidirectional magnetoresistance (UMR) in TBG, where the unidirectionality refers to the resistance change under the reversal of the direction of the current or magnetic field. We point out that flat bands significantly enhance this effect. The UMR increases quickly upon reducing the twist angle and reaches about 20% for an angle of 1.5$^circ$ in a 10 T in-plane magnetic field. We propose the band structure topology (asymmetry), which leads to a direction-sensitive mean free path, as a useful way to anticipate the UMR effect. The UMR provides a probe for chirality and band flatness in the twisted bilayers.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا