ﻻ يوجد ملخص باللغة العربية
Let $X^n$ be a uniformly distributed $n$-dimensional binary vector, and $Y^n$ be the result of passing $X^n$ through a binary symmetric channel (BSC) with crossover probability $alpha$. A recent conjecture postulated by Courtade and Kumar states that for any Boolean function $f:{0,1}^nto{0,1}$, $I(f(X^n);Y^n)le 1-H(alpha)$. Although the conjecture has been proved to be true in the dimension-free high noise regime by Samorodnitsky, here we present a calculus-based approach to show a dimension-dependent result by examining the second derivative of $H(alpha)-H(f(X^n)|Y^n)$ at $alpha=1/2$. Along the way, we show that the dictator function is the most informative function in the high noise regime.
Motivated by DNA-based storage, we study the noisy shuffling channel, which can be seen as the concatenation of a standard noisy channel (such as the BSC) and a shuffling channel, which breaks the data block into small pieces and shuffles them. This
This work considers a communication scenario where the transmitter chooses a list of size K from a total of M messages to send over a noisy communication channel, the receiver generates a list of size L and communication is considered successful if t
Bent functions, which are maximally nonlinear Boolean functions with even numbers of variables and whose Hamming distance to the set of all affine functions equals $2^{n-1}pm 2^{frac{n}{2}-1}$, were introduced by Rothaus in 1976 when he considered pr
It is shown that for any binary-input discrete memoryless channel $W$ with symmetric capacity $I(W)$ and any rate $R <I(W)$, the probability of block decoding error for polar coding under successive cancellation decoding satisfies $P_e le 2^{-N^beta}
We construct a joint coordination-channel polar coding scheme for strong coordination of actions between two agents $mathsf X$ and $mathsf Y$, which communicate over a discrete memoryless channel (DMC) such that the joint distribution of actions foll