ﻻ يوجد ملخص باللغة العربية
Motivated by DNA-based storage, we study the noisy shuffling channel, which can be seen as the concatenation of a standard noisy channel (such as the BSC) and a shuffling channel, which breaks the data block into small pieces and shuffles them. This channel models a DNA storage system, by capturing two of its key aspects: (1) the data is written onto many short DNA molecules that are stored in an unordered way and (2) the molecules are corrupted by noise at synthesis, sequencing, and during storage. For the BSC-shuffling channel we characterize the capacity exactly (for a large set of parameters), and show that a simple index-based coding scheme is optimal.
The relay broadcast channel (RBC) is considered, in which a transmitter communicates with two receivers with the assistance of a relay. Based on different degradation orders among the relay and the receivers outputs, three types of physically degrade
This work considers a communication scenario where the transmitter chooses a list of size K from a total of M messages to send over a noisy communication channel, the receiver generates a list of size L and communication is considered successful if t
This paper studies the capacity of the peak-and-average-power-limited Gaussian channel when its output is quantized using a dithered, infinite-level, uniform quantizer of step size $Delta$. It is shown that the capacity of this channel tends to that
A class of diamond networks is studied where the broadcast component is orthogonal and modeled by two independent bit-pipes. New upper and lower bounds on the capacity are derived. The proof technique for the upper bound generalizes bounding techniqu
Communication over the i.i.d. Rayleigh slow-fading MAC is considered, where all terminals are equipped with a single antenna. Further, a communication protocol is considered where all users transmit at (just below) the symmetric capacity (per user) o